Stay vigilant against phishing attacks. Chorus One sends emails exclusively to contacts who have subscribed. If you are in doubt, please don’t hesitate to reach out through our official communication channels.

Blog

The Pectra Upgrade: The Next Evolution of Ethereum Staking

Chorus One
Chorus One
May 5, 2025
5 min read
May 5, 2025
5 min read

As a world-leading staking provider and node operator, we’re excited to support this next phase of Ethereum and the opportunities it unlocks. In this article, we’ll explore what Pectra is, its impact on the staking economy, and how Chorus One is delivering best-in-class experiences for stakers in this new era.

Ready? Let's dive into the Pectra upgrade!

Pectra’s Impact on Ethereum Staking

Pectra is a major milestone in Ethereum’s proof-of-stake evolution. By raising validator stake limits, enabling auto-compounding, introducing partial withdrawals, and accelerating activations, this upgrade makes staking more scalable, capital-efficient, and accessible for both solo stakers and institutional participants.

Increased Validator Stake Capacity

At the heart of Pectra is the massive increase in validator stake capacity. The upgrade’s marquee proposal, EIP-7251, raises a validator’s Maximum Effective Balance (MEB) from the rigid 32 ETH limit to 2,048 ETH, through the introduction of a new validator type using the 0x02 withdrawal prefix. This permits large node operators to consolidate into fewer validators, while allowing for compounding rewards, and more flexible increments for stakers operating under the new 2048 ETH limit.

It’s all about reductions. Reduced nodes leads to reduced network congestion, which further results in:

  • Reduced p2p message overhead.
  • Reduced signature aggregation overhead.
  • Reduced size of the beacon state.

When a new node is added to the Ethereum network, all nodes must exchange attestations with it (P2P messages), and the beacon chain must store information about that validator (balance, status, etc.). All of this exponentially increases congestion as each new validator is added to the network.

Currently, there are approximately 1 million nodes on Ethereum, with around 32 million ETH staked. With Pectra, a single validator can secure up to 64× more ETH, allowing for the consolidation of dozens of separate validator instances into one. If all ETH were consolidated into 0x02 validators, the size of the validator set would go down to 15,625. This may seem like an extreme or unrealistic conversion rate, but we actually expect the conversion rate to be pretty high over time. Of the 32M ETH staked, nearly 13.3M is in Liquid Staking Protocols, pools that aggregate ETH from users, and as such are extremely likely to consolidate in order to reduce operational overhead and slashing risk. A large portion of the remaining ETH is held by institutional holders, CEXs, etc., with holdings in excess of 2048 ETH; which will also likely be consolidated.

So, there is actually a pretty good chance that over the next 12 months, the number of ETH nodes will go down by 100x, massively improving network efficiency.

Higher Rewards & Flexible Staking Ranges

The original Ethereum staking framework was rigid, with each validator capped at 32 ETH, and any rewards earned beyond this amount had no impact on returns. In order to optimize rewards, operators were required to manually withdraw funds and secure an additional 32 ETH before spinning up a new validator. With EIP-7251, these rewards can be automatically reinvested up to the new 2,048 ETH cap, allowing for auto-compounding of the staking rewards.

At the same time, this makes staking more flexible than ever. Instead of the fixed 32 ETH increments, stakers will be able to allocate any amount between 32 ETH and 2,048 ETH within a single validator. This means that a user with 40 ETH could stake their entire balance, as opposed to under the old framework, where they would have to secure an additional 22 ETH (for a total of 64) and spin up an entirely new validator. This benefits both individual stakers and large-scale operators, enhancing capital efficiency and allowing for more tailored staking strategies.

Triggerable Exits & Partial Withdrawals

Historically, only validators could initiate exits, meaning stakers had to rely on node operators to process withdrawals. This created a trust dependency, particularly in staking-as-a-service models and pooled staking setups, where participants had limited control over their staked assets.

Pectra addresses this with EIP-7002, which allows the execution-layer withdrawal address to directly trigger validator exits. This means that instead of depending on validator operators, stakers can now independently initiate withdrawals, giving them greater control over their funds.

Beyond full exits, Pectra also refines partial withdrawals, allowing validators to seamlessly withdraw excess ETH beyond the 32 ETH staking requirement. Previously, while partial withdrawals were enabled in the Shanghai upgrade, they were processed in batches, sometimes leading to delays and inefficiencies. With Pectra, this process becomes more efficient, ensuring that staking rewards are automatically withdrawn without requiring validator intervention or disrupting staking activity.

By shifting exit control to the execution layer and optimizing partial withdrawals, Pectra enhances staker autonomy, reduces trust dependencies, and improves liquidity in Ethereum’s staking ecosystem.

Faster Validator Activations

Before Pectra, when users staked ETH, it remained in the deposit contract until it was processed and assigned to a validator, a process that could take hours or even days, leading to delays in activation.

Pectra improves this with EIP-6110, which embeds validator deposit data directly in execution layer blocks. This eliminates the need for validators to pull deposit data from the beacon chain separately, significantly reducing activation wait times. The benefits of this are:

  • Faster staking onboarding – Validators can start securing the network sooner.
  • More transparent deposit handling – Deposits are recorded directly in execution blocks, making the process easier to track.
  • Better user experience for stakers – Reduced delays mean stakers can begin earning rewards more quickly.

This upgrade streamlines validator activations, making Ethereum’s staking process more efficient and responsive.

Slashing on Pectra

Currently, on Ethereum, the minimum slashing penalty (for double signing) is 1 ETH. This is calculated by dividing the effective balance by 32. Since the effective balance pre-Pectra is always 32, the slashing amount is almost always exactly 1 ETH.

However, with the stake limit changed to 2048 ETH, if a fully consolidated node is slashed, you could incur a 64 ETH penalty for each double sign. This penalty is very high and might disincentivize staking, harming overall network security.

To mitigate this, Pectra will change the slashing penalty to 1/4,096 of the total stake. So, if a node has the maximum effective balance (MEB) of 2048 and gets slashed, the new penalty would be 2048/4096, which amounts to 0.5 ETH. This lower penalty is to encourage the consolidation of validators by reducing risk. Effectively, with the Pectra upgrade, you have a higher ARR, initially at a lower slashing risk. However, this might change as the number of nodes comes down. This is a massive argument in favor of users switching to 0x02 validators.

A New Era for the Staking Economy

With Pectra, Ethereum staking is entering a new era of efficiency, flexibility, and accessibility. In the next section, we’ll explore how Chorus One is implementing Pectra’s advancements to deliver higher rewards, seamless staking experiences, and cutting-edge innovations for our clients.

Chorus One’s Approach to Pectra

As mentioned previously, Pectra introduces a new validator type (0x02 prefix) that allows for larger stake limits, automated compounding, and operational efficiency. At Chorus One, we are committed to providing our clients with the most optimized staking experience, ensuring they fully benefit from these improvements while maintaining network integrity and performance.

Support for Both 0x01 and 0x02 Validator Types

We understand that different stakers have different needs. That’s why Chorus One will continue to support both validator prefix types (0x01 and 0x02). However, we strongly encourage our clients to transition to the 0x02 validator type, as it offers higher rewards through compounded rewards, while also enhancing network efficiency.

Seamless Migration & Validator Consolidation

For existing Chorus One clients, we offer a smooth transition to Pectra’s 0x02 validator format. For new clients, if you’re considering moving your stake to Chorus One, enjoy a seamless onboarding process, where you can deploy a new 0x02 validator, maximizing staking efficiency from day one.

Maximizing the Benefits of Compounding

To ensure our clients experience the full benefit of Pectra’s compounding feature, Chorus One will implement a custom effective balance limit for 0x02 validators, set at 1910 ETH. This accounts for around 2 years of compounding rewards at a rate of 3.5% annualized, before reaching the 2048 ETH cap, allowing for sustained reward optimization.

Why Stake with Chorus One?

At Chorus One, we optimize staking operations in order to maximize performance and rewards. Through leading early-stage research, collaboration with other industry leaders, and advanced testing of new implementations, we aim to provide our clients with the highest possible returns, while actively contributing to Ethereum’s long-term security and efficiency.

MEV Optimization

Ethereum validators play a crucial role in Maximal Extractable Value (MEV). Our team is at the forefront of reward optimization for our stakers. In 2024, we worked on our proprietary mev-boost fork called Adagio. Our research showed that Adagio delivered a total improvement of 16.67% in MEV rewards from June 2024 until the end of the year. To learn more, click here.

In 2025, we stopped using the Adagio model as relays began to exploit timing games. Our focus has now shifted to optimizing connectivity to relays rather than fine-tuning timing parameters. Since then, we’ve focused on:

  • Co-location with key relays — placing servers physically closer to MEV relays to reduce latency and land more valuable blocks.
  • Optimal peering — selecting the best network routes to reduce latency even further.

This way, we’re able to optimize for rewards and performance for our stakers.

Early Adoption of Preconfirmations for Reward Enhancement

We stay ahead of the curve by actively testing and implementing groundbreaking technologies that enhance staking rewards. Working alongside key players, including Chainbound/Bold, Primev, and ETHGas, we stay vigilant in testing and implementing cutting-edge solutions. In fact, Chorus One led the first-ever preconfirmations using Bolt during the ZuBerlin and Helder testnets.

We have since continued to conduct and share our research, with the most recent additions being our research paper on Pricing Transactions for Preconfirmations. You can also try out our preconfs dashboard, which allows you to test pricing strategies across more than 400k transactions. Plus, access our very own Random Forest Model, which outperformed even the Geth’s heuristics-based transaction fee-pricing.

Innovative Reward Opportunities through DVT Technologies

We provide unique opportunities to enhance staking rewards through Distributed Validator Technology (DVT), in collaboration with industry leaders such as Obol and SSV. Our deep involvement in Ethereum research and development positions us as the most capable and reliable staking operator.

Want to start maximizing your ETH staking rewards with a leading staking provider?

👉Stake With Us!

From Holesky to Hoodi: Pectra’s Difficult Path to Mainnet

This wouldn't be an analysis of Pectra without addressing the elephant in the room, Holesky. On Monday, February 24, 2025, the Pectra upgrade was activated on the Holesky testnet. Unfortunately, a bug in specific Execution Layer (EL) clients (specifically Geth, Nethermind, and Besu) caused them to use the wrong deposit contract address. As a result, these clients processed a block incorrectly, leading to a network split where:

  • Validators using Erigon and Reth (correct configuration) rejected the invalid block.
  • Validators using Geth, Nethermind, and Besu (misconfigured clients) accepted the invalid block and continued building on it.

This divergence created two chains:

  1. The invalid chain (majority chain) – most validators followed it.
  2. The valid chain (minority chain) – only a few validators correctly followed it.

Because most validators followed the incorrect chain, the overall network health degraded, making it difficult for nodes to sync to the correct chain and potentially undermining the reliability of testnet transactions.

To resolve the issue, Ethereum developers proposed a coordinated slashing approach. The plan aimed to:

  • Get enough Holesky validators online simultaneously to finalize a block on the correct chain.
  • Slash validators who had attested to the invalid chain, forcing them off the network.
  • Reduce the stake of slashed validators below 33% so that the correct chain can be finalized.

Holesky validators were instructed to update their clients to patched versions, sync to the valid chain and disable slashing protection by slot 3737760 to enable attestations to the correct chain.

A coordination call was scheduled to guide node operators, with Chorus One among the participants. Unfortunately, this slashing experiment failed, leaving Holesky in a prolonged period of instability.

In response, Ethereum developers launched a new testnet called Hoodi in late March 2025. Chorus One became one of the 29 Hoodi genesis validators to help with the network’s launch and to be among the first entities active on the new testnet for Pectra. Hoodi mirrors mainnet conditions more closely, with a similar validator count and infrastructure. Pectra was deployed there and finalized just 30 minutes after activation, a sharp contrast to the Holesky failure. Hoodi is now expected to replace Holesky as Ethereum’s primary public testnet later this year.

The Hoodi deployment serves as the final dress rehearsal for Pectra.

Stake with Chorus One

The Pectra Hardfork represents a watershed moment for Ethereum, redefining what’s possible for both individual stakers and large-scale institutions. As a leading validator service provider, Chorus One stands at the forefront of these changes, offering modern solutions that transform the way you stake and manage your crypto assets.

If you’re ready to experience optimal performance, higher rewards, and a truly next-gen staking platform, contact us or visit our website to learn more about how Chorus One can help you thrive in the Pectra era. Let’s enter this exciting new chapter of Ethereum staking together.

👉Stake With Us!