Blog

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Opinion
The State of Ethereum Restaking: Economics, Challenges, and Future Directions.
This article presents a comprehensive overview of the Ethereum restaking ecosystem, exploring its key players, economic dynamics, and the challenges ahead for sustainable growth.
November 12, 2024
5 min read

Restaking is an emerging concept that has quickly become a central theme in the current crypto cycle. However, this concept is not new; the earliest example of restaking can be traced back to Polkadot’s Parachain system. Each Parachain can have its own specific use case, governance model, and tokens, but they all benefit from Polkadot’s shared security model, meaning they don’t need to secure their own networks. Instead, they rely on the Relay Chain for security, allowing the stake on Polkadot to secure other chains.

This concept has also been adopted by Cosmos through Interchain Security. The concept of Replicated Security involves one blockchain serving as a security provider for other blockchains. The blockchain that provides security is referred to as the Provider Chain, while the blockchains inheriting the full security and decentralization of the Provider Chain are called Consumer Chains.

More recently, the concept has been brought to Ethereum via EigenLayer, and projects like Symbiotic and Karak have also emerged, actively competing within Ethereum's ecosystem. On Cosmos and Polkadot, restaking is embedded directly within the protocol, in contrast on Ethereum, restaking is facilitated via smart contracts, creating a more open market where restaking marketplaces can operate independently. Here, the idea is to use ETH, ETH LSTs, or ERC20s to secure other networks, known as Actively Validated Services (AVS), in order to earn additional yield while accepting additional risks, such as slashing (which would come in the future). With Ethereum’s rollup-centric roadmap and the growth of Layer 2s, liquidity and dApps are increasingly shifting away from Ethereum Layer 1 to L2s. As a result, the core value proposition of Ethereum Layer 1 will become its economic security and large market capitalization. EigenLayer, along with other restaking marketplaces like Symbiotic and Karak, capitalizes on this by offering economic security to Ethereum-aligned external networks.

In this paper, we will provide an overview of the restaking market on Ethereum as it stands today, explore its business model and economics, and discuss the future of the restaking landscape and its challenges.

Part I. Overview of the Restaking Landscape
  1. An analysis of the market on Ethereum

In the Ethereum restaking space, 3 prominent platforms have emerged: EigenLayer, Symbiotic, and Karak. EigenLayer has taken the lead as the first restaking marketplace to launch on Ethereum Mainnet and continues to dominate in terms of Total Value Locked (TVL), with over 4.17 million ETH equivalent.

On June 19, 2024, EigenLayer reached its peak TVL, hitting an all-time high of 5.43 million ETH equivalent before experiencing a slight decline.

Symbiotic began accepting deposits on June 11, 2024, quickly reaching its initial deposit cap of 41,290 wstETH in just 5 hours. A second cap of 210,600 wstETH was set on July 3, 2024, and was also reached within 4 hours. The last cap was introduced on August 14, 2024, coinciding with the launch of BTC deposits. These different deposit caps are clearly visible in the graph below.

Currently, Symbiotic has approximately 644,000 ETH equivalent deposited on its platform.

Note: Symbiotic has not yet launched its mainnet, users can only deposit funds at this stage.

Karak successfully launched its mainnet on October 18, 2024, marking a significant milestone for the platform. However, the protocol has attracted slightly fewer deposits compared to both EigenLayer and Symbiotic, with around 205,000 ETH equivalent deposited.

In this competitive market, despite the emergence of new platforms, EigenLayer remains the clear leader, holding approximately 6x more TVL than Symbiotic and 20x more than Karak.

  1. Composition of the TVL
  1. EigenLayer

A significant portion of EigenLayer's TVL is driven by Liquid Restaking Protocols (LRTs). Our analysis of the major LRTs on EigenLayer shows that they currently account for approximately 75.37% of the platform's TVL, with an all-time high of 75.46% in July 2024. This indicates that more than 75% of the TVL in EigenLayer comes from users interacting with Liquid Restaking protocols rather than directly through the EigenLayer application.

The protocols included in our analysis are EtherFi, Renzo, Puffer Finance, Kelp DAO, Swell, and Bedrock.

When examining the composition of each LRT, we can see that EtherFi is the largest LRT contributor on EigenLayer, followed by Renzo and Puffer.

There are several reasons why LRTs have become the primary liquidity source for EigenLayer and restaking platforms in general:

  • They provide additional incentives on top of the restaking platforms’ incentives (or points)
  • They offer a simpler onboarding process for users
  • They issue a Liquid Restaked Token that can be used in DeFi
  • There is no lock-up period, as the LRT can be sold on the open market

  1. Symbiotic

Looking at Symbiotic, a similar pattern emerges, with approximately 61.61% of the TVL coming from Mellow vaults and EtherFi. This highlights that a large portion of liquidity is funneled through external protocols rather than directly through Symbiotic itself.

Only about 38.39% of the total TVL has been deposited directly via the native Symbiotic app.

  1. Karak

For Karak, the situation is a bit different. It appears that there is only one major LRT on Karak, which is EtherFi with around 17% of the TVL, while 83% of the Karak TVL has been deposited on the native app.

  1. Restaking movements

Let’s dive into recent movements in the restaking space. A quick look at the inflows and outflows between EigenLayer and Symbiotic suggests that large inflows into Symbiotic correspond with outflows from EigenLayer.

Based on a recent analysis from Gauntlet, covering the period from June to September 2024, approximately 1,011,000 ETH was withdrawn from EigenLayer during this time. Of this, around 170,000 ETH was moved directly to Symbiotic. However, users didn’t just transfer this amount, they added another 37,000 ETH on top, making a total of 207,000 ETH deposited into Symbiotic.

The 207,000 ETH deposited into Symbiotic accounts for about 42.20% of the 488,000 ETH locked in Symbiotic at that time, meaning that approximately 42.20% of Symbiotic's TVL came directly from withdrawals on EigenLayer.

However, it’s important to note that only 16.5% of the ETH withdrawn from EigenLayer has remained within the restaking ecosystem, while the other 83.5% has exited the market entirely for now.

EigenLayer and Symbiotic flows, Source: Gauntlet

Part II. Economics of Restaking
  1. Restaking, main actors and targeted market

Restaking is supposed to allow networks, commonly known as Actively Validated Services (AVSs) in the restaking ecosystem, to quickly bootstrap a validator set and get a certain level of economic security with minimal time investment.

In this model, platforms like EigenLayer, Symbiotic, and Karak act as marketplaces where restakers, operators, and AVS entities come together. However, their goals are not the same. Here’s a breakdown:

  • Restakers: Their goal is to maximize restaking yields by looking at the best risk-adjusted returns on their positions.
  • Operators: They manage the AVS infrastructure and accept assets from restakers. Operating an AVS incurs additional costs, which vary depending on the AVS architecture. In exchange for providing this service, operators should earn revenue from the AVS.
  • Activated Validated Services (AVS):  The AVS gets its economic security from restakers who deposit collateral and gets operational security from operators who support its infrastructure. In return, the AVS must generate yield to incentivize both operators and restakers to sustain this operational and economic security.

At this point in the market, very few AVSs have clearly defined how much economic security they need or how much they are willing to offer to attract operators and restakers.

Who is restaking meant for?

Restaking has not yet found a clear product-market fit. It isn’t particularly suited for high-value, high-FDV networks, as these networks are large enough to offer large incentives, manage their own validator sets, and provide additional utility for their native tokens (for example, staking the native token to earn a staking yield, rather than paying restakers who hold a different token). It’s difficult to imagine large networks like Monad or others using restaking.

That said, restaking seems more suitable for small to medium-sized projects that don’t yet have the resources to bootstrap a totally sovereign network. Restaking allows them to grow, mature and find product-market fit before being totally sovereign without relying on 'rent' payments to holders of other tokens. However, there are also some AVSs that use restaking for very specific purposes and are not intended to be sovereign, as they bring services and value to the underlying Layer 1.

  1. Restaking Yield and Challenges

EigenDA stands out as the first AVS to distribute yield to both restakers and operators. Currently secured by around $10 billion in economic security, it has become a significant player in the emerging restaking ecosystem. However, the economics of maintaining such a network pose several challenges and require a closer examination.

Yield Distribution and Economic Security

EigenDA currently offers 10 ETH per month in rewards to restakers and operators. With a TVL used for economic security of around $10 billion, the total annual amount distributed to operators and restakers corresponds to $300,000 assuming the price of ETH at $2,500. Assuming an economic security of $10 billion, this represents a gross APR of just 0.003%.

This low yield highlights a key challenge in the restaking model: balancing the need for economic security with adequate incentives for participants.

The Cost of Running an AVS

The cost of operating an AVS varies based on the specific infrastructure and requirements needed for it, but on average, we estimate the monthly infrastructure cost to run at around $400 per AVS. Over the course of a year, this represents approximately $4,800 for a single AVS. With 18 AVSs currently in the market, the annual cost for one operator to run all of them comes to $86,400. It’s important to note that this figure does not account for additional expenses such as the salaries of the DevOps teams required to maintain and secure the infrastructure.

EigenLayer currently has 340 operators running at least one AVS each. If an AVS wants to fully leverage the economic security provided by EigenLayer while ensuring that operators cover their infrastructure costs, the financial commitment grows significantly. The formula is simple:

• $400 per month per operator

• 340 operators

This results in a total annual infrastructure cost of $1.63 million. And that’s just for maintaining the infrastructure by 340 operators, it doesn’t include the incentives that need to be paid to restakers.

Cost for an AVS to cover infrastructure costs

EigenLayer has introduced programmatic incentives to maintain its TVL on the platform. You can track the yield from these incentives here. EigenLayer is distributing 16,736,467 EIGEN to Eigen restakers and operators over one year, and 50,209,400 EIGEN to ETH and ETH LST restakers. This not only supports the restaking economy but also helps AVSs to take the time to find ways to incentivize operators and restakers.

  1. Restaking: Inferior to Traditional Proof of Stake?

In most cases with restaking, AVSs that aren’t yet generating revenue will likely introduce a native token to incentivize restakers. This means they will use their native token to compensate ETH restakers or other ERC20 restakers. As a result, restakers who may simply prefer their rewards in ETH or a specific ERC20 token, are likely to automatically convert these AVS rewards back into their preferred tokens.

Economically, this model is fundamentally weaker than a traditional Proof of Stake system. In traditional staking, participants buy the native token, show commitment to the project, and stake to earn rewards. Since they’ve invested in the native token, they are more likely to hold onto their staking rewards longer than restakers who receive AVS rewards.

In today’s restaking market, there are also auto-compounding products that automatically convert restaking rewards into ETH to boost the restaked position, which encourages immediate selling of AVS tokens.

Part III. What to Expect for the Future of Restaking

  1. AVS Yields as a Catalyst for TVL Growth

As slashing goes live, we expect restakers to pay closer attention to the operators they select, particularly the quality of services offered. Additionally, TVL growth will likely be driven by operators’ ability to deliver the best risk-adjusted returns.

Marketplaces are expected to become more flexible, with leading AVSs establishing caps on the amount of security they require or incentivize. The evolution of TVL numbers for AVSs is likely to change as soon as the activation of slashing and yield mechanisms will encourage each AVS to set limits on the TVL they incentivize. This implies that delegations to each AVS will be limited, or yields will be diluted, as AVSs aim to avoid paying for excess security they don’t need.

The introduction of a new security model that distinguishes between "unique" and "total" stake will reshape distribution.

We anticipate different methods by which AVSs will compensate operators for providing security:

  • Protocol Token Incentives: Some AVSs may opt to reward restakers with their own native tokens through an inflationary system. This approach is risky because inflationary tokens can become diluted over time, especially compared to ETH, the base token. If the price of the AVS token declines while ETH remains stable, the AVS will need to distribute more tokens per reward epoch, increasing selling pressure or reducing the AVS yield. The advantage of this model is that it’s the easiest and cheapest way to pay restakers for an AVS.
  • ETH Payouts: The protocol keeps a portion of the fees generated, while the rest is distributed to restakers who provide security. Node operators earn a commission for running the infrastructure. This structure aligns the interests of the protocol, operators, and security providers, all of whom are rewarded in ETH for securing the AVS. The downside of this model is that fees can be low if the AVS doesn’t generate substantial revenue, or it can become costly if the AVS uses its treasury to pay out in ETH (similar to EigenDA).
  • Hybrid model: AVSs distribute fees generated from their operations, but if this is insufficient to attract the desired level of security, they may supplement these rewards with their own token. This approach could make restaking yields more appealing to both restakers and operators.

At this stage, we believe the leading node operators will benefit in two key ways:

  1. They will be best positioned to conduct thorough due diligence on emerging AVSs.
  2. They will gain access to top AVSs. Leading AVSs will probably have a permissioned set of professional Node Operators. Restakers seeking exposure to these AVSs will need to restake with professional Operators.

  1. Challenges for LRTs

This change in economic conditions could impact major Liquid Restaking Protocols. They attracted substantial liquidity thanks to their own incentives in native tokens, but they now have billions in economic security to provide to AVSs, which, on the other hand, will be difficult to incentivize given the high amount to incentivize for the AVSs. What we see is the following:

  • Challenges for Large LRTs: Larger LRT platforms may struggle to allocate their TVL efficiently while maintaining attractive restaking yields. For example, EtherFi, with $6 billion in TVL, might need to opt into more AVSs to offer yields comparable to its competitors, while simultaneously increasing exposure to a broader set of slashing conditions once that feature goes live. They will likely face pressure to further decentralize their Operator set to reduce slashing risks.
  • Increased Demand for Top Operators: As the restaking ecosystem matures, top operators are likely to be more and more important, as they will be able to offer better yield by being the favorite choice of top AVSs with capped amounts of economic security. This will shift the balance of power toward operators, as LRT platforms seek partnerships with those capable of selecting and operating top AVSs/Networks.

To be sustainable, the best LRTs must offer at least the Ethereum staking yield and compete directly with Liquid Staking Tokens (LSTs). This is why many LRT protocols accept native ETH (such as EtherFi, Renzo, Swell, etc.). Even if the restaking yield isn’t significant, users still gain exposure to an LST+ protocol, meaning they receive the benefits of liquid staking as a baseline, with potential upside if the restaking yield becomes attractive.

Conclusion

The Ethereum restaking ecosystem has unlocked new possibilities, enabling small to medium-sized projects to leverage Ethereum’s economic security. While restaking offers significant advantages, its current economic model and design face some challenges. As Ethereum restaking continues to evolve to address these issues, we can expect increased collaboration between AVSs and leading operators, fostering a stronger and more sustainable ecosystem for restakers.

About Chorus One

Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.

Core Research
Opinion
Paladin’s Quest for Fair MEV: Evaluating the Bot and the Atomic Arbitrage Market
Evaluation of the Bot and the Atomic Arbs Market
October 24, 2024
5 min read
TL/DR
  • Unaligned MEV is a significant long-term threat to Solana's growth.
  • Efforts are underway to democratize MEV, with Jito being the most well-known solution.
  • A new player, Paladin, an atomic arbitrage bot, has recently emerged.
  • We explain Paladin’s architecture together with its associated token.
  • The atomic arbitrage market is estimated at $42 million, which could boost validator APY by 0.07%.
  • Paladin captured 16% of atomic arbitrages in our slots, adding 0.01% in annualized APY.
  • We project APY could increase to 0.03% if Paladin runs on 50% of validators, assuming market conditions stay the same.

MEV on Solana

Due to the unique architecture of blockchains, block proposers can insert, censor, or sort user transactions in a way that extracts value from each block before it's added to the blockchain.

These manipulations, called MEV or Maximum Extractable Value, come in various forms. The most common are arbitrage¹, liquidations², NFT mints³, and sandwiching⁴. Arbitrage involves exploiting price differences for the same asset across markets. Liquidations occur in lending protocols when a borrower’s collateral drops in value, allowing others to buy it at a discount. NFT mints can be profitable when high-demand NFTs are resold after minting.

Most types of MEV can benefit the ecosystem by helping with price discovery (arbitrage) or preventing lending protocols from accruing bad debt (liquidations). However, sandwiching is different. It involves an attacker front-running a user’s trade on a DEX and selling immediately for a profit. This harms the ecosystem by forcing users to pay a consistently worse price.

Solana’s Characteristics

Solana's MEV landscape differs from Ethereum's due to its high speed, low latency, lack of a public mempool, and unique transaction processing. Without a public mempool for viewing unconfirmed transactions, MEV searchers (actors specializing in finding MEV opportunities⁵) send transactions to RPC nodes directly, which then forward them to validators. This setup enables searchers to work with RPC providers to submit a specifically ordered selection of transactions.

Moreover, the searchers don't know the leader's geographical location, so they send multiple transactions through various RPC nodes to improve their chances of being first. This spams the network as they compete to extract MEV—if you're first, you win.

Jito

A key addition to the Solana MEV landscape is Jito, who released a fork for the Solana Labs client. On a high level, the Jito client enables searchers to tip validators to include a bundle of transactions in the order that extracts the most value for the searcher. The validators can then share the revenue from the tips with their delegators.

These revenues are substantial. Currently, the Jito-Solana client operates on 80% of validators and generates thousands of SOL daily in tips from searchers. However, searchers keep a portion of each tip, so the total tip amounts don’t reveal the full MEV picture. Moreover, the atomic arbitrage market is considerable, and as we’ll explore later, Jito's tips don’t give an accurate estimate of the atomic MEV extracted.

Share of tips paid by searchers to validators and Jito per day. Source: https://dune.com/ilemi/jitosol

Jito⁶ introduced a few new concepts to the Solana MEV landscape:

  • Bundles: a list of transactions searchers create and send to the Block Engine. The bundle is executed sequentially and atomically, with either all transactions being executed or none.
  • Block Engine: receives transactions from relayers and shares them with searchers. Searchers use these transactions to create bundles that extract MEV and then forward the bundles back to Block Engine. The Block Engine simulates these bundles to determine which are the most profitable and then sends those selected bundles to validators.
  • Relayer: receives transactions from RPC nodes, validators, and other sources, filters them, checks signatures, and forwards them to validators and the block engine.

There’s more to the current MEV landscape on Solana, particularly concerning spam transactions, which largely result from unsuccessful arbitrage attempts, and the various mitigation strategies (such as priority fees, stake-weighted quality of service, and co-location of searchers and nodes). However, since these details are not central to the focus of this article, we will set them aside for now.

Enter Paladin

It's still early for Solana MEV, and until recently, Jito was the only major solution focused on boosting rewards for delegators. Following the same open-source principles, the Paladin team introduced a validator-level bot⁷ and an accompanying token that accrues value from the MEV collected by the bot.

The Bot

The main idea behind Paladin is this:

  • The bot funnels MEV rewards to the token airdropped to validators and stakers.
  • The token accrues value from the extracted MEV.
  • Validators stake the token and, with the risk of slashing, have less incentive to sandwich.

Paladin’s success, therefore, depends on validators choosing honesty over toxic MEV extraction by running the Paladin bot.

Bots like Paladin⁸ operate at the validator level, enabling them to capitalize on opportunities that arise after Jito bundles and other transactions are sent to the validator for inclusion in a block.

In this scenario, once the bot assesses the impact of the transactions and bundles, it inserts its transactions into the block. The bot doesn’t front-run the submitted transactions but leverages the price changes that result after each shred is executed.

Paladin can also extract MEV through DEX-CEX arbitrage and optimize routes for swaps made via DEX aggregators. However, these features are currently not used in practice, so we only briefly mention them. Since the bot is a public good, the community can contribute by adding features like NFT minting or liquidation support in the future.

The Token

The PAL token is where 10% of the value extracted by the bot in SOL gets accumulated. Paladin will go live at TGE, which will airdrop the entire supply of 1 billion PAL in the following proportions:

  • 50% to validators and their delegates.
  • 23% to the Solana ecosystem that contributed to Paladin's development.
  • 20% to the Paladin team.
  • 7% to a fund for Paladin's future development.

At the architecture level, the MEV extracted by the bot is sent to a smart contract, which then distributes it as follows:

The crucial part of the Paladin architecture is slashing. If the validator misbehaves and extracts MEV through sandwiching, staked PAL holders (other validators and their delegators) can vote to slash the rogue validator. The slashing happens if >50% of the majority is reached and stays at this level for a week. The slashed PAL is burned.

Other actions that could lead to slashing include not running Paladin, using closed-source upgrades, or not participating in slashing votes. This isn't an exhaustive list, as PAL stakers can vote to slash for other reasons at their discretion. While sandwiching is easy to spot, other "misbehaviors" may not be as obvious and would require monitoring tools, potentially leading to enforcement issues.

Unstaking PAL is capped at 5%, and a cooldown period of one month before the next withdrawal can be made.

Controversies

There are several controversies about Paladin⁹. Here are common criticisms:

Validators Profit Unfairly

This is not true. Palidators (validators running Paladin) receive 90% of the MEV extracted by the bot, which they can redistribute to their delegators while keeping their standard commission. The remaining 10% goes to the PAL token, with 7.5% each going to validators and their stakers. This setup ensures validators don't take a larger share of MEV profits. If a validator doesn’t share the captured MEV, delegators can switch to one with a healthy long-term track record, like Chorus One.

Run Paladin or Die

Validators must run Paladin and avoid toxic MEV extraction or any actions that could undermine their reputation for honesty. Slashing can also occur if validators run closed-source software on top of Paladin. This doesn't mean market participants can't enhance the bot. On the contrary, they are encouraged to do so and can be rewarded in PAL if their improvements are openly available to others.

No Development Post-TGE

After the PAL airdrop, the Paladin team will no longer develop the bot¹⁰. All maintenance and strategy updates will be the community's responsibility from then on. This includes adding new liquidity pools or tokens to identify emerging MEV opportunities. While a fund has been set aside for future development, it is uncertain how long it will last. Development may stall if the incentives dry up.

Paladin’s Opportunity

With the knowledge of how Paladin works, let’s evaluate its target market and assess its performance based on our collected data.

Atomic Arbitrage Market

We will start by analyzing Jito tips paid for atomic arbitrage and compare them to the overall atomic arb market to see how much of the atomic opportunities have been captured through Jito.

We will use data from mid-August 2024¹¹ onward, when the share of Jito tips related to atomic arbitrage rose significantly. We exclude earlier data to avoid bias. Interestingly, this spike happened despite the drop in the total MEV extracted through atomic arbs, indicating increased competition among searchers now willing to share more Jito tips.

Source

Even though tips from atomic arbs have increased compared to the total arb MEV market, they still make up only a small percentage of the total Jito tips paid.

Source

Only 4.25% of the tips searchers paid during the sampled period were from atomic arbs (SOL 10,316 out of SOL 242,754). At a SOL price of $150, this is $1,547,400, while the total atomic MEV extraction reached $6,567,554.

Source

So, only about 23% of the total atomic arbitrage opportunities were shared through Jito! Some striking examples include:

  • From September 25 to September 29, this bot extracted $24k using Jupiter aggregator but tipped only 0.1 SOL to Jito.
  • Over the same period, another bot extracted $24.2k using the Jupiter aggregator without tipping anything.

This shows that most on-chain arbitrage MEV is being captured outside of Jito. Unfortunately, this also leads to a high number of failed transactions.

During one of the measured five-day periods, over 1 million arbitrage transactions were made, with 519k of them submitted through the Jupiter aggregator [source]. This led to a significant number of failed transactions because:

  • Searchers are flooding transactions to the leader.
  • Jupiter tries routing through all possible paths, causing unsuccessful paths to end as failed transactions.
Source

The above data shows that Paladin can tap into a sizable on-chain arbitrage market by finding opportunities more efficiently and avoiding failed transactions. This approach would benefit validators by filling blocks with successful transactions and improving the ecosystem by reducing congestion.

Bot’s Performance

The annual atomic arbitrage market is around $42.4 million. With 392 million SOL staked [source] ($58.9 billion at $150 per SOL), this could add about 0.07% APY to validator performance.

Let's dive deeper into the data to see how much market the bot can take.

Distribution and Dataset

The distribution of atomic arb MEV in USD per slot for the data collection period (15 August to 10 October 2024) looks as follows:

The median value is $0.00105 per slot, with atomic arbitrage opportunities occurring in 51.6% of slots.

Paladin operated on our main validator with a 1.15m SOL stake for a week between 4 October and 11 October. Let’s see the atomic arbitrage market opportunities during the bot's operation period:

The median value is $0.00898 per slot, and the chance of atomic arbs is present in 59.47% of slots.

The KS test shows inconsistencies in both datasets, with a positive shift in the distribution, indicating higher values in the second dataset. Therefore, Paladin operated in a more favorable environment, with more significant and more frequent MEV extraction opportunities than the broader measurement period. This is especially clear when you look at the size of Jito tips during our timeframe.

Source

Now, let's look at how Paladin performed in these circumstances.

The median arb profit is $0 per slot, with opportunities taken only in 29.64% of slots.

Here’s a more detailed summary of all three distributions:

As we can see, Paladin underperformed, capturing significantly less MEV and earning less per slot. The bot only managed to capture 15.84% of the total available atomic arbitrage opportunities.

In some of the most striking examples, the bot extracted only 0.00004 SOL (here and here), while the actual extractable value was $127.59, as seen in Tx1, Tx2, Tx3, Tx4, and Tx5.

The reason for failing to extract MEV from the opportunities in the linked transactions is that  Paladin doesn’t support the traded token ($MODENG). This is a problem since memecoins are currently driving network activity and will likely contribute the largest share of MEV. These tokens emerge rapidly, requiring frequent updates to routing. One of Paladin's top priorities should be quickly adapting to capture MEV from new memecoins as they arise, and the lack of team involvement in the process is problematic in this context.

Estimated Returns

Now, let’s run a simulation to estimate the returns under different scenarios based on a stake share of 0.3% (Chorus One's share), 1%, and 10%. The returns are capped at 15.8%, which is the portion of opportunities Paladin captured in our data.

The median value for 0.3% of the total stake is around $20k, which matches the annualized value of what Chorus One earned. This increases to about $65k for a validator with 1% of the total stake and exceeds $700k for a hypothetical validator with 10%.

We also ran a simulation to estimate how much Paladin’s performance could improve if it captured 80% of available opportunities for a validator the size of Chorus One across different adoption levels—1%, 10%, 25%, and 50% of total stake using Paladin. At an estimated 1% adoption, our validator earns an additional 0.01% APY from the bot, while the total potential atomic arbitrage could generate 0.07% of the total stake.

The simulation assumes:

  • The MEV landscape remains constant.
  • The bot will catch more opportunities as adoption grows, but the APY is capped at 0.035% in the 50% adoption scenario.

And in a more tangible form:

As we see, Paladin could generate a median of additional 0.29% in APY for a validator with 0.03% of the total stake once adoption reaches 50%.

We've been in touch with the Paladin team, who confirmed that a new version of the bot, P3, is in the works. This version will pivot from focusing on the atomic arbitrage market, which they no longer see as substantial enough to prioritize.

Maintenance

The bot has been stable without major issues, but Paladin requires patches to update strategies and fix smaller bugs. Maintaining the bot is also time-consuming for the engineering team, as each patch requires a restart and the process is more complex than anticipated, adding extra overhead.This is a similar problem we faced with our Breaking Bots—maintenance and strategy update costs were high. Eventually, we concluded that the effort was not exactly worth it. With Paladin, however, a whole community could tackle this problem, so things may look different.

Conclusion

Paladin has great potential to boost earnings for validators and stakers by tapping into new opportunities, but it's still in the early stages of development. While our analysis shows that Paladin currently captures only around 15.84% of available atomic arbitrage opportunities, this will likely improve as the bot becomes more optimized and widely adopted. The upside is promising—the total atomic arbitrage market could add 0.07% to a validator’s APY. While capturing all of it is unlikely, even a share of this can lead to solid gains.

That said, there are challenges to address. The bot’s development will shift to the community after the token TGE, raising questions about whether there will be enough resources and motivation for continuous updates. Additionally, maintaining the bot on the validator side can be tricky, as each patch requires a restart, making it time-consuming for validators to run.

Chorus One’s Perspective

At Chorus One, we believe that the long-term health of the Solana ecosystem is paramount. Paladin builds on the same core principles as Jito—to mitigate the toxic MEV and democratize good MEV.

We developed Breaking Bots with these ideas in mind, and we see Paladin as an extension of our efforts. Two solutions are better than one, and Paladin offers an interesting alternative to what exists today. Supporting multiple approaches is a cornerstone of decentralized systems, and we welcome new ideas that build resilience.

While we don't agree with all of Paladin's choices, especially regarding the team's lack of future bot development, we believe its success will benefit the entire ecosystem, and that's why we support it.

That being said, if the core principles Paladin is built on change, or the maintenance costs outweigh the benefits in the mid-term, we will reevaluate our position.

References:

1 You can find an interesting overview of arbitrage MEV here.

2 A detailed analysis of liquidations in DeFi is available in this paper.

3 More about the NFT MEV here.

4 Chorus One also provided an analysis on Solana sandwiching in here.

5 An in-depth write-up on searchers by Blockworks is here.

6 Information based on Jito documentation.

7 At Chorus One, in our “Breaking Bots” paper, we proposed a similar solution. The implementation details are available on GitHub.

8 Information based on series blogposts by the Paladin team.

9 Some of the examples available here, here,

10 Per the blogpost: We’re not a Foundation or Labs — we don’t run any part of Paladin, we don’t develop it, we don’t maintain it…

11 The data used in this section is available here and can be retrieved using these queries.

About Chorus One

Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.

Opinion
Why APR Is a Misleading Metric for Evaluating Node Operator Performance
We explain why APR is not the best metric for measuring node operator performance and suggest better suited alternatives
October 21, 2024
5 min read

In the context of Ethereum and Proof-of-Stake (PoS) networks, the Annual Percentage Rate (APR) is often presented as a clear and accessible measure of validator performance. As a summary statistic, APR seeks to answer a straightforward question: If I stake 32 ETH today, how much can I expect to have after one year?

However, APR is fundamentally an oversimplification of a highly complex system. Its role as both a measure of past returns and a forecasting tool obscures the intricate dynamics that govern validator rewards on Ethereum.

For example, using APR to predict future returns is like:

- > Using a small sample of stocks from the S&P 500 to estimate the average yearly return —similar to how APR behaves for small validators.

-> Using just 1-2 years of S&P 500 data to forecast long-term returns —similar to relying on short-term APR data like 7-day or 30-day rates.

This article aims to unpack the underlying biases of APR, explore the stochastic nature of validator rewards, and propose alternative metrics that offer a more accurate assessment of node operator performance—metrics which align more closely with operational realities. Finally, we will examine how Chorus One’s approach, incorporating our proprietary MEV-boost fork, Adagio, captures a more refined understanding of Ethereum staking dynamics. By optimizing the interaction with Ethereum’s proposer-builder separation, Adagio allows us to consistently improve validator efficiency, resulting in tangible improvements in performance without relying on the variability of APR metrics.

How is APR Calculated?

Ethereum validators are compensated through two primary reward streams:

  1. Consensus Layer (CL) Rewards: These rewards arise from the validator's core duties—validating transactions and, in some cases, proposing new blocks. The most deterministic of these duties is attestation, which every validator performs at regular intervals (every epoch). However, other rewards such as block proposals and sync committee participation are assigned randomly.
  2. Execution Layer (EL) Rewards: EL rewards derive from transaction fees and, notably, Maximal Extractable Value (MEV), which is only accessible to validators selected to propose a block. (read: Execution Layer Rewards = non-deterministic = random).

While the attestation process is deterministic, rewards from block proposals and MEV are inherently probabilistic. This variability introduces a fundamental challenge: APR assumes a uniform distribution of rewards across validators, which is far from reality. The skewed nature of the reward distribution makes APR a poor proxy for expected returns, especially over shorter time horizons.

The Role of Randomness in Validator Rewards

The central flaw in using APR as a measure of validator performance lies in its failure to account for the randomness that defines much of the reward structure. To illustrate this, consider the following:

  • Proposer Selection: The likelihood of being chosen to propose a block is distributed randomly across the validator set. Block proposals, when they occur, result in substantial rewards, especially when considering MEV opportunities. However, given that the probability of selection is low for any individual validator, APR for smaller operators can be heavily skewed by the randomness of proposal selection.
  • Sync Committee Participation: Sync committees are another source of rewards assigned randomly. Like block proposals, this can cause significant variability in rewards over time, particularly for validators operating on a smaller scale.

As these rewards are driven by skewed distributions, their mean value—a key input for APR—becomes a biased estimator. Skewness is a measure of how asymmetrically data is distributed , see e.g. here. In probability theory, the mean of a skewed distribution is a poor representation of the typical outcome. Validators who are fortunate enough to receive multiple block proposals or sync committee assignments will see a disproportionately higher APR compared to validators who, through no fault of their own, are assigned fewer opportunities.

The Impact of Validator Set Size

To further understand how randomness impacts APR, it is useful to visualize the reward distribution for validators operating at different scales.

The plot above shows how reward skewness changes based on the number of validators controlled. Precisely, higher is the skewness, longer is the upper tail, indicating that the overall distribution is asymmetric on the right. The consequence is that the mean is higher than the median. MEV rewards are the most skewed (bottom-right), meaning they vary the most between validators. Sync committee selection also has a significant impact (top-left), while block proposals have the least skew (bottom-left).

What’s clear is that as the number of validators increases, the skewness in rewards drops significantly. This means larger validator sets see more consistent rewards, while smaller sets face more variability due to randomness. The same holds true even by accounting for only a smaller time period instead of the whole year data.

-> This highlights why APR, when viewed in isolation, is not a reliable measure of performance, particularly for node operators running fewer validators.

This plot shows the distribution of simulated APR assuming different number of validators controlled. It is evident how the APR becomes reliable only when the number of controlled validators is high compared with the number of active validators (purple and cyan histograms). This is because, as we saw earlier, when more validators are controlled, the skewness in rewards decreases, making APR more reliable.

It is worth noting that, the aggregate APR of an entity controlling more validators is not the APR of a single customer, usually holding a lower number of validators. In this case, the APR of the small subset is affected by higher variance as in the case of low number of validators controlled.

However, when rewards are pooled—such as in solutions like Chorus One’s ETH staking vault on Stakewise —this variance is minimized. By pooling rewards across many validators, customers gain exposure to the performance of top-tier node operators while benefiting from a more consistent and stable APR.

Reliable Metrics for Measuring Validator Performance

In light of these insights, what should we look at when evaluating a validator’s true performance? A more reliable framework involves focusing on the operational aspects that are within the control of the validator:

  1. Effectiveness: A validator’s effectiveness in performing assigned duties is a far more accurate reflection of performance than APR. This includes attestation success rates, proposal success rates, and participation in sync committees when selected.
  2. Uptime and Availability: Validators with high uptime are well-positioned to maximize their performance, even if they are not selected for block proposals frequently. Ensuring near-perfect uptime guarantees that a validator will never miss an opportunity when one arises.
  3. Frequency of Fulfilled Duties: Tracking how often a validator fulfills its core responsibilities, particularly in terms of attestation and proposal accuracy, is key. Validators with higher frequencies of fulfilled duties demonstrate operational excellence, independent of the randomness associated with reward assignment.

These metrics provide a far more grounded understanding of validator performance than APR, which often serves more as a reflection of stochastic luck than actual skill or operational consistency.

Understanding Chorus One’s ETH Validator Performance

At Chorus One, we approach Ethereum staking with a deep commitment to performance optimization. While APR figures may fluctuate due to the randomness of block proposals, we have developed sophisticated tools to maximize validator returns and minimize variance.

Central to this approach is Adagio, our internally optimized MEV-boost client. Adagio improves Execution Layer rewards by optimizing the way we interact with block builders. Specifically, we have introduced latency parameters that allow us to extract higher MEV rewards without compromising slot accuracy. This gives our validators a distinct advantage in capturing Execution Layer rewards, effectively smoothing out the variability that undermines traditional APR metrics.

Moreover, our focus on uptime and effectiveness ensures that our validators consistently outperform industry benchmarks. By maintaining near-perfect operational performance and leveraging cutting-edge tools like Adagio, Chorus One is able to deliver superior returns over the long term, irrespective of the randomness that defines APR calculations.

Source: Ethereum Network

Source: Chorus One

Over the past 30 days, Adagio has delivered an 8.45% increase in MEV rewards compared to a standard configuration without Adagio.

For real-time tracking of Adagio's MEV rewards and to explore its performance further, visit our live dashboard: Adagio Dashboard.

Final Word: The Truth About APR

APR, while often used as a shorthand for node operator performance, is a fundamentally flawed metric. Its reliance on skewed distributions and random events, such as block proposals and sync committee participation, makes it a biased estimator for expected returns. Instead of focusing on APR, a more reliable approach to evaluating validator performance involves analyzing metrics like effectiveness, uptime, and frequency of fulfilled duties.

At Chorus One, our focus on operational precision and technical advancement allows us to consistently deliver reliable performance. With solutions like Adagio, we enhance reward optimization, offering staking outcomes that navigate the inherent volatility and randomness of APR-based assessments.

Staking ETH with Chorus One is effortless—just a few clicks, and you’re on your way to earning rewards. No hassle, just seamless staking.

Start staking today: https://opus.chorus.one/pool/stake/

Or, speak to our team to learn more.

Learn more about MEV and Ethereum node operator performance:
MEV:Metrics that Matter

Timing Games and Implications on MEV extraction

Check out all our research reports

About Chorus One

Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.

Opinion
Breaking down ACP-77: Reinventing Subnets on Avalanche.
We demystify Avalanche's crucial proposal, ACP-77, and why it matters.
July 26, 2024
5 min read

The Avalanche Foundation has unveiled ACP-77, a transformative proposal set to redefine Subnet creation and operation within the Avalanche blockchain ecosystem. This ambitious initiative aims to lower entry barriers, enhance flexibility, and foster a more decentralized and dynamic network environment. Here, we delve into the intricacies of ACP-77, exploring its current context, proposed changes, benefits, and potential challenges.

-> Please note, ACP-77 proposes renaming 'Subnets' to 'Avalanche L1s (Layer 1s)'. If the proposal passes, they will henceforth be known as Avalanche L1s.

The Current landscape of Subnets

Subnets and their role: In the Avalanche ecosystem, subnets function as independent blockchains that leverage the mainnet for interoperability. However, the existing requirements for Subnet validation have created significant hurdles for developers.

The cost barrier: Currently, validators of Subnets must also validate the Avalanche mainnet, necessitating a minimum stake of 2,000 AVAX. At today's rates, this amounts to a substantial financial commitment, approximately $70,000. This high cost deters many developers that aim to jumpstart their Subnet by running their own validators, stifling innovation and limiting the expansion of the subnet ecosystem.

Key proposals of ACP-77

ACP-77 introduces a series of pivotal changes designed to overhaul the Subnet creation process, making it more accessible and efficient.

1. Decoupling Subnet and Mainnet validation:

  • Current Requirement: Validators must validate both the subnet and the mainnet, involving a high financial stake.
  • Proposed Change: Subnet validators will no longer be required to validate the mainnet. This separation allows subnet creators to define their own validator sets and operational logic, significantly reducing costs.

2. Enhanced validator set management:

  • Autonomy for Subnets: Subnet creators will gain the ability to establish their own rules for validator sets, staking rewards, and operational conditions. This autonomy empowers developers to tailor their subnet operations to their specific needs and goals.

3. P-Chain fee mechanism:

  • Service payments: Subnet validators will pay the P-Chain for services such as validator set changes and cross-Subnet communication.
  • Continuous balance depletion: Avalanche L1s will have balances on the P-chain that deplete continuously, requiring periodic refills to maintain operations. This ensures an ongoing contribution to the network’s overall functionality and security.

4. Streamlined synchronization:

  • Current process: Validators must sync with the entire mainnet, which can be resource-intensive.
  • Proposed process: Validators will only need to sync with the P-Chain, reducing resource requirements and streamlining the validation process.

Benefits of ACP-77

The proposed changes in ACP-77 bring several significant benefits to the Avalanche network and its developers.

1. Lower costs and increased accessibility:

  • Reduced Financial Barriers: By removing the 2,000 AVAX requirement, ACP-77 makes the creation of L1s and maintenance far more affordable. This democratization of Subnet access is poised to unlock a wave of innovation and participation within the ecosystem.

2. Greater flexibility and autonomy:

  • Customizable operations: Subnet creators can now define their own validator rules, staking rewards, and operational conditions. This flexibility allows for highly customized and optimized Subnet operations, tailored to specific project needs.

3. Incentives for decentralization:

  • Promoting decentralized models: The new framework encourages projects to adopt more decentralized, permissionless models. This shift towards decentralization enhances the resilience and diversity of the network.

4. Enhanced security and interoperability:

  • Self-regulated security: Subnets will be responsible for their own security and validator integrity allowing even for restaking solutions as an example, promoting better self-regulation and robust security practices.
  • Seamless interoperability: Through Avalanche Warp Messaging (AWM), Subnets will enjoy improved interoperability, facilitating smoother communication and collaboration across the network.

Potential challenges and considerations

While ACP-77 promises numerous benefits, it also introduces certain challenges that need to be addressed.

1. Economic implications:

  • Impact on AVAX tokenomics: The changes in validator requirements could affect the overall AVAX holdings among Subnet validators, influencing the tokenomics and market dynamics of AVAX. Careful analysis and management will be needed to maintain balance and stability.

2. Implementation complexity:

  • Transition challenges: The shift to new validation models and the continuous fee mechanism introduces complexity in implementation. L1 operators will need to adapt to new cost structures and operational protocols, which may require significant adjustments and planning.

Final word

ACP-77 represents a bold and forward-thinking step in the evolution of the Avalanche network. By lowering financial barriers, enhancing flexibility, and promoting decentralization, this proposal has the potential to unlock unprecedented growth and innovation within the Subnet ecosystem. While challenges remain, the careful implementation of ACP-77 could pave the way for a more accessible, dynamic, and resilient Avalanche network, fostering a new era of blockchain development and collaboration.

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 60+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Opinion
Restaking Synopsis (week c/ May 6 - May 10)
A roundup of the key EigenLayer ecosystem highlights by Chorus One
May 11, 2024
5 min read

Before getting started with this edition of the Restaking Synopsis, we’d like to take a moment to highlight our uniqueAVS Selection Framework, that we announced on Thursday, May 9th!

TL;DR:

Since EigenLayer launched, operators have been busy onboarding every AVS out there. But there’s only 1 problem with that - this may not be a wise long-term approach.

We've detailed why in an article (linked below), and to summarize, here's what sets our approach apart:

🛑 No "Onboard All" Promise: We prioritize AVSs with breakout potential, filtering out those with complexity and risk.

Rigorous Criteria: Our selection filters are based on strict engineering, security, and economic factors.

🎖Quality Over Quantity: Only AVSs that meet our criteria will be onboarded.

This reflects our customer-first principle and long-term vision for the EigenLayer ecosystem.

Feel free to check out the full article for more details on our AVS Selection Framework, why we're taking this unique approach, and why this approach is an important consideration for EigenLayer users.

Read the entire article here: https://chorus.one/articles/the-chorus-one-approach-to-avs-selection

🌟BONUS: Here's a meme-thread explanation of our AVS Selection: https://x.com/ChorusOne/status/1788928433461903496

Ecosystem Highlights
  1. Chorus One announces a unique AVS selection framework.
  2. New AVS Supported by Chorus One: Lagrange. Details here.
  3. EigenDA opens claims window for EIGEN on May 10 (Scroll down for details)
  4. Chorus One joins the select group of operators running Eoracle's latest release on Mainnet.
  5. Sreeram Kannan provides insights on intersubjective truth and use-cases of AVSs with intersubjective slashing.
Got LSTs? Restake them with EigenLayer using OPUS Pool!  

OPUS Pool enables you to seamlessly stake ETH, restake a variety of LST’s and delegate your restaked assets to Chorus One on a single platform.

✅ Stake, Restake, and Delegate using just a few, simple clicks

✅ Completely permissionless
✅ Easily view/download your entire historical staking rewards report

✅ View and track your restaked asssets

✅ All on a single platform

Visit OPUS Pool: https://opus.chorus.one/pool/stake/

Your guide to OPUS Pool: https://chorus.one/articles/your-guide-to-opus-pool-stake-mint-oseth-and-restake-with-eigenlayer

EigenDA: The EIGEN claims window is open. 🔥

As of May 10, you can claim your EIGEN, restake it (if you haven’t already) and choose to delegate to an EigenLayer Operator for future rewards!

The steps?

1. Claim EIGEN here: http://claims.eigenfoundation.org

2. Restake it (if you haven’t already): http://app.eigenlayer.xyz/restake/EIGEN

3. Delegate your restaked assets to Chorus One: https://app.eigenlayer.xyz/operator/0xf80b7ba7e778abf08a63426886ca40189c7ef48a

Note: You can currently only restake and delegate your EIGEN via the EigenLayer dashboard.

Final Word

If you’re interested in learning more about staking/restaking with Chorus One, simply reach out to us at staking@chorus.one and we’ll be happy to get back to you!

Additionally, if you’d like us to share further resources on any topic, please let us know!

Thanks for reading and see you next time!

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Opinion
News
The Chorus One approach to AVS selection
We outline Chorus One's thesis on the EigenLayer ecosystem, our strict onboarding policy, and our track record
May 9, 2024
5 min read

Our EigenLayer strategy is to onboard all the AVSs that have chances of being break-out winners, while filtering out the long tail of AVSs that introduce complexity and risk. With this combination, we aim to deliver the best risk-adjusted reward APY to users delegating their restaked assets to by Chorus One. The first section covers our thesis, the second our onboarding policy and the third our track record.

1: Our thesis

The EigenLayer ecosystem will have hundreds of AVSs and be the leading mechanism for Ethereum to scale and service billions of users.

We expect individual AVSs to follow a power law distribution in competency and success, similar to the patterns observed elsewhere in crypto. For Cosmos, an application-specific ecosystem similar to EigenLayer, this data-set shows 6 chains have over $1 billion circulating market cap, 16 are between $100 million and $1 billion, and 42 are under $100 million. Most Cosmos chains never achieve significant success, with market caps exceeding $100 million. The median chain barely gains traction and struggles for attention and impact. In the broader crypto market, there are ~14,000 tokens (from CoinGecko). The median token is illiquid. All the realized alpha in crypto lies in the outliers - the top 500 chains with market caps above $90 million and sufficient liquidity. AVSs will be similar - all the returns will exist in the top 20% of AVSs.

Not only are successful AVSs the exception, but there is major alpha in early participation in promising projects with no defined market value. Most AVS projects will spend significant time in a pre-launch phase where the mainnet service does not exist. Testnets are rolled out while the developers build functionality and product features. During this phase, there is no clarity on the economics of reward delivery of the AVS. There is also no market cap, token supply, or token price information to rely on. There are likely also caps on the number of operators that can be enrolled by the project developers for testing. Because of the lack of information and transparency in the market, the overall ecosystem of Node Operators (NO’s) and restakers cannot perfectly judge the project. Hence, outsized yields, can be produced. The EIGEN token delivers the best example of such an opportunity - it delivered returns to early restakers in the 30%-60% range, depending on when exactly the restakers participated and how trading markets stabilize.

It is possible (and a mistake) to onboard the entire long-tail of AVSs. Such an approach will radically boost infrastructure complexity and risk. Complexity and risk lead to the need to charge high commissions, thus reducing the risk-adjusted APY for restakers. Eventually, it accentuates slashing risk. Technical due diligence, that tests for originality and legitimacy of software work, as well as application of software development best practices has always been and continues to be the best method for filtering out the long tail, and narrowing focus on the break-out winners.

2: Our onboarding framework

We will apply our infrastructure effort in a subset of chains that pass our strict filtering criteria. When multiple AVSs pass our filtering criteria concurrently, our internal prioritization will look at the positive signals from the projects.

Our filtering criteria focuses on evaluating the software engineering of projects. Our method for evaluation consists of 3 parts:

  • Is there a development team on the other side following good code development practices? Any competent developer or developers will produce a trace of code changes, testing suites, logical parts with commit messages, issues, debates, discussions, technical whitepapers and documentation. If these are absent, chances are high that it is an unoriginal cut-paste job belonging to the long tail of AVSs.
  • Will running this code put Chorus One infrastructure at risk? Every AVS binary we run requires access to our internal network and access to some keys. These are critical resources that can be used to attack Chorus One if the development team is malicious. It is non-negotiable for us to be able to see the source code of the AVS, and for the code binary to require access to an isolated set of keys corresponding to (only) the AVS. This filter is important so that our infrastructure remains at low risk of slashing.
  • Will the project have release management conducive to running the network stably? This is the least important factor, because this can be upgraded at later parts of a project. The essence of it is that we will be running a binary, and be subject to network issues. Is there someone to reach out with help when issues are hit? Is there a consistent way to deal with security updates? Is there a clear communication channel? etc. Bad release management is indicative of a disengaged development team, again likely belonging to the long tail.

Our filtering criteria focuses not on the easily molded exteriors of the project - the website, the podcasts or the marketing - but rather on the hard to change signal-rich factors that usually accompany a winning project in crypto.

When multiple AVSs cross our filter and require prioritization, we will prioritize them depending on the following signals:

  1. Network or Product Idea: Is the service produced by the network novel and value generating for some segment of users?
  2. Work History and Team reputation: Are the early team members reputed or have significant prior contributions?
  3. Backing by reputable investors: Investment by investors is a way of developing more confidence in (1) and (2). As such, it is the weakest positive signal because it relies on hearsay, rather than first hand experience.

3: Our track record

We’ve applied a similar framework for our onboardings across Cosmos and in our venture investments. Chorus One is the most successful validator venture investor counting early participation in Solana, Lido, Celestia, Dymension, Saga, Wormhole, GogoPool, Neutron and Osmosis. In addition, we have infrastructure certifications highlighting the care with which we operate the networks.

Cosmos is the best example of an alternative application specific eco-system similar to EigenLayer. Our selection process, applied over 6 years has consistently picked all the top 20 chains, except two. On Cosmos, we have the best track record on participating with the governance processes of application specific chains.

Our early experience in EigenLayer, which includes research on network wide risk and slashing cascades, reinforces our belief in our onboarding process. We’ve encountered AVSs with plagiarized code, closed source code, and AVSs with key management systems that would expose our entire EigenLayer setup (operator key) to attack. These experiences have made it impossible for us to follow an “onboard all AVSs” path.

As a restaker with Chorus One, you derive the following benefits with our approach:

  • A Node Operator that takes infrastructure risk seriously, and is the best prepared for slashing features to go-live on the ecosystem.
  • A Node Operator that capitalizes on the gains from early participation in winning AVSs by investing all their energy in doing that well, instead of trying to onboard every below average project.

We will never be the operator with the most number of AVSs onboarded. And that works because it is far more critical to be early supporters of the break-out successes. Here’s to finding the gems early!

Restaking with Chorus One

Seamlessly restake with Chorus One using OPUS Pool: https://opus.chorus.one/pool/stake/

Here's a step-by-step guide to using OPUS Pool: https://chorus.one/articles/your-guide-to-opus-pool-stake-mint-oseth-and-restake-with-eigenlayer

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Opinion
On the Risks for Restaking ETH with Chorus One through Eigenlayer
Understand the risks inherent to restaking in Eignelayer and how Chorus One maintains a security first approach to your assets.
March 11, 2024
5 min read
Summary
  • OPUS Pool allows you to stake any amount of ETH, mint osETH as a liquid token and deposit your osETH into Eigenlayer (when the deposit cap is lifted). You can also restake LSTs and be an early depositor in the protocol, to allow a seamless delegation to Chorus One as soon as the option is enabled.
  • Before choosing to click on “restake”, you might want to consider some of the inherent risks to restaking your tokens. These include general staking risks, and risks specific to the Eigenlayer protocol.
  • Chorus One has a historical record of strong security practices. We have obtained the ISO 27001:2022 certification, have robust infrastructure with 24/7 on-call, and have never suffered any slashing incidents in our 6-years of service. Beyond that, we dedicate time to research best security practices and due diligence for all our networks.

As Ethereum restaking gains momentum, we wanted to take a moment to enumerate some of the risks that you as a user might be exposed to when choosing to restake your tokens. While restaking’s innovative consent can offer benefits to Ethereum staking, like generating more value for your staked tokens, it is also important to think clearly and consider some of these potential risks:

Slashing

As with any staking activity on Ethereum, your pledged ETH is subjected to networks rules that can result in the partial or total loss of your tokens, in the case of proven malicious activity that targets the network. Although slashing is a relatively rare occurrence (and has never happened to any of Chorus One’s validators), it is still the biggest risk you might be subjected to. When users are able to delegate tokens,  they would be susceptible to slashing penalties from both Ethereum and Actively Validated Services (AVS's).

Smart contract risk

A more common source of risk is related to the smart contracts that govern the protocols and services on Ethereum, as they are susceptible to bugs on their code that can be exploited, as well as unexpected behavior under untested conditions. Projects built on Eigenlayer (like our OPUS 'Pool' restaking fuctions) ultimately secure their funds within the contracts of Eigenlayer. In the event of an attack on the Eigenlayer contract, the funds of associated projects may be jeopardized. This would be true as well of the code associated with different AVSs.

Eigenlayer has been audited twice in the past, a first audit done by Consensys Diligence, and a second audit done by Sigma Prime. You can read more about the auditing process here: https://docs.eigenlayer.xyz/eigenlayer/security/audits

Additional risks

Although the first two would be the most definitive scenarios that could have a direct effect on your restaked assets, there’s another suite of known (and possible unknown) risks that can be linked to this new technology:

  • Lack of liquidity of your staked assets that are locked in Eigenlayer, plus 7-day delay to withdraw any funds.
  • Potential risks associated with the concentration of assets within the Restaking protocol.
  • Liquid staking tokens may experience price fluctuations or other consequences if enough accumulation occurs in their EigenLayer contracts.
  • In the case of native restaking, you have some consensus risk, because you’re setting the withdrawal address to an EigenPod. This might introduce some new incentives in the protocol.

Chorus One puts a premium on the security of all its users, recognizing its paramount importance in fostering trust and peace of mind. Through our comprehensive security framework, we ensure that your investments are well-protected: both, in our OPUS Pool and OPUS Dedicated products, in our underlying infrastructure, and at every step when deciding to onboard a network or protocol.

ISO 27001:2022 Certification

Chorus One adheres to stringent regulatory requirements, safeguarding your assets in accordance with data protection and privacy laws. In October 2023, we attained the coveted ISO 27001:2022 certification ensuring world-class security for all our customers.

Resilient infrastructure

We guarantee our high-quality of service with minimal disruptions, due to a strategic combination of multiple availability zones for our infrastructure; and network security procedures such as stringent access control, encrypted connections, firewall fortifications and security configurations. Our team is trained and provided with security awareness workshops to ensure our best line of defense.

Careful research process

Our dedicated research team conducts in depth due diligence on all the networks and protocols we onboard, to understand any potential risks we can be exposed to when participating on the systems. We go above and beyond to build a more security-minded ecosystem and to promote professional standards in the industry.

Learn more about Chorus One’s commitment to security here: https://security.chorus.one/

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Opinion
EIP 4844: What does Proto-danksharding mean for Ethereum scalability?
Everything you need to know about the Ethereum Dencun Upgrade
February 26, 2024
5 min read
Key Takeaways
  • Ethereum’s next hard fork upgrade is named Cancun-Deneb (Ethereum Dencun) – which is expected to happen on March 13, 2024.
  • Ethereum Dencun Upgrade has been successfully deployed on all the Ethereum testnets, including Goerli, Sepolia, and Holesky; and is now ready to be implemented on the Ethereum mainnet.
  • The Ethereum Dencun upgrade is set to implement the proto-danksharding specification (EIP-4844), breaking down the network into data blobs to bring about increased efficiency on Ethereum, making it more scalable and lowering transaction costs.
  • A whole host of other Ethereum Improvement Protocols are also set to be implemented in this upgrade, like EIP-7044, EIP-7045, and EIP-7514.

Proto-danksharding, blobs, and data availability are terms becoming increasingly familiar in the Ethereum community, all leading up to the Dencun Upgrade – Ethereum's most significant update since Shapella.

With less than a month to the upgrade, Chorus One is here to provide you the essential information about this pivotal event, including three key staking/validator based Ethereum Improvement Proposals (EIPs) involved, with a special focus on the much-anticipated EIP-4844.

First, a look back.

In April 2023, we explored the post-Shapella landscape in our blog article "Beyond Shapella," highlighting the significant impact of the Shapella upgrade on Ethereum staking. This upgrade introduced the flexibility to withdraw staked ETH and rewards, captivating institutional interest in Ethereum, the second-largest cryptocurrency by market cap.

The Shapella upgrade marked a turning point, boosting ETH's staking appeal among institutional investors. Since then, Ethereum's roadmap has seen several developments, leading us to the brink of another major milestone - the Dencun upgrade. This forthcoming hard fork is set to advance Ethereum's evolution, promising to tackle existing challenges and open up new opportunities.

In fact, Ethereum jumped 28% since the start of February and rose above $2,900 at the time of writing, as the Dencun upgrade approaches and transaction numbers on L2s climb up.

What is the Dencun Upgrade

The Ethereum Cancun-Deneb (Dencun) Upgrade, scheduled for March 13, 2024, is a pivotal hard fork aimed at enhancing the network's scalability, security, and usability. This upgrade, incorporating key Ethereum Improvement Proposals (EIPs) such as EIP-4844 for proto-danksharding, is set to improve network efficiency and lower transaction costs. Building on the achievements of prior updates like the Shanghai upgrade, Dencun seeks to fortify the infrastructure for decentralized applications and elevate the Ethereum user experience.

At its heart, the Dencun Upgrade integrates advancements from the Cancun upgrade on the execution layer with those from the Deneb upgrade on the consensus layer, employing a dual approach to refine Ethereum's protocol rules and block validation procedures. The inclusion of various Ethereum Improvement Proposals (EIPs), especially Proto-Danksharding, is geared towards enhancing scalability from different dimensions.

Additionally, the upgrade will introduce a series of other EIPs, including EIP-4788, EIP-6780, and EIP-5656. While this article will concentrate on the most crucial proposal, EIP 4844: Protodanksharding, it will also touch upon three staking and validator-centric improvements within the Dencun Upgrade: EIP-7044, EIP-7045, and EIP-7514.

EIP 7044: Perpetually Valid Signed Voluntary Exits

The introduction of EIP-7044 marks a significant advancement: exit messages will have indefinite validity, removing the need for continual updates and ensuring a smoother withdrawal process. This EIP specifically targets the challenge posed by the limited lifespan of signed voluntary exit messages, simplifying the staking landscape, especially in cases where the staking operators and fund owners are not the same.

TL;DR: EIP-7044 makes it easier to withdraw staked funds by ensuring that exit requests don't expire. This removes the hassle of having to update these requests regularly, especially helpful when the staking operators and fund owners are different.

EIP 7045:  Increase max attestation inclusion slot

EIP-7045 modifies the timeline for attestations, extending the inclusion period from one rolling epoch to two fixed epochs. This adjustment gives validators additional time to incorporate their attestations into a block, thereby enhancing the security and stability of Ethereum's Proof of Stake (PoS) consensus mechanism. The expansion of maximum attestation slots contributes to quicker block confirmations and bolsters the consensus mechanism's resistance to short-term censorship attempts.

TL;DR: EIP-7045 changes how long validators have to get their approvals into a block, extending it from one flexible time period to two set time periods. This extra time helps make Ethereum's system for confirming transactions more secure and stable, speeds up the process of confirming blocks, and makes it harder for anyone to temporarily block or censor transactions.

EIP-7514: Add max epoch churn limit

EIP-7514 proposes to change how fast new validators can join the Ethereum network. Instead of the current system where the number of new validators can grow quickly (exponentially) because the amount of new validators accepted also grows, this proposal suggests a steady (linear) increase by setting a limit of 8 new validators per epoch (~6.4 minutes). This means no matter how many people want to become validators and how big the active set grows, only 8 will be able to  join in each epoch. This approach aims to make the network more manageable, especially when a lot of people are waiting to stake their ETH. It helps prevent the network from getting overloaded and keeps everything running smoothly.

TL;DR: EIP-7514 plans to limit the number of new validators joining the Ethereum network to 8 every 6.4 minutes. This change aims to control growth and prevent the system from becoming overloaded, ensuring it runs smoothly even when many people want to stake their ETH.

4844: Proto-danksharding - All you need to know

EIP-4844, known as Proto-Danksharding, is a key update to Ethereum that introduces a new type of transaction called "blobs", for better data storage efficiency. This allows for more cost-effective data posting to the Ethereum mainnet by Rollup sequencers, without overloading the network, due to the controlled size and quantity of blobs in each block. The innovative aspect is the temporary storage of blob data in Ethereum's consensus layer, not its execution layer, which boosts scalability while keeping the network decentralized. Proto-danksharding sets the stage for further scalability enhancements, such as full Danksharding, by improving gas consumption and network resource management.

Benefits of proto-danksharding
  • Layer 2 rollups, the key users of proto-danksharding, consolidate several transactions into one for storing on Ethereum, but currently incur high expenses due to the cost of calldata.

Proto-danksharding allows these rollups to employ data blobs for posting grouped transactions more affordably, greatly decreasing operational expenses and enhancing scalability.

  • Proto-danksharding harmonizes network efficiency with decentralization. It maintains data blobs as temporary and restricts their size, ensuring that smaller, individual node operators can continue to contribute to the network.
  • The introduction of data blobs in Ethereum boosts the network's throughput by allowing more data to be included in each block without overwhelming the system. This enhancement enables Ethereum to support a greater number of transactions, users, and decentralized applications (dApps), thereby expanding its overall capacity.

Chorus One’s role in the Dencun Hardfork

The Dencun upgrade is set to significantly enhance Ethereum's appeal, making it more attractive for developers, builders, and investors, by boosting transaction efficiency and cutting costs.

At Chorus One, we've been diligently preparing for this upgrade, ensuring our clients and software are updated in a timely manner to prevent any impact on our users. Our proactive approach underscores our dedication to facilitating a smooth transition and maintaining strong staking support after the upgrade.

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

No results found.

Please try different keywords.

 Join our mailing list to receive our latest updates, research reports, and industry news.

Want to be a guest?
Drop us a line!

Submit
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.