Go to https://solflare.com/access, connect your account and navigate to Staking tab
Go to https://solflare.com/access, connect your account and navigate to Staking tab
Click on CREATE ACCOUNT, enter the amount of SOL you want to stake, search for Chorus One and click on Stake
Select Native SOL Staking
Approve the transaction in your wallet. You're now staking with Chorus One!
Proof of History (PoH) is a permissionless, network-wide source of time that functions before consensus. PoH is not a consensus process, but rather a cryptographic approach for tracking time in a blockchain network by establishing timestamps.
Some include: SolFlare, Sollet, Phantom, Math, Atomic, Exodus and Zelcore.
The boom in the DeFi and NFT spaces have pushed fees on Ethereum extremely high causing crypto users to seek other options like Solana.
Solana is one of the most efficient blockchains. It can attain over 50k transactions per second with its Proof of History approach while limiting expenses to $10 per 1 million transactions.
We’re excited to announce a strategic collaboration with Ledger, a global leader in hardware wallet security. This collaboration empowers Solana (SOL) holders to stake their tokens securely via Ledger’s trusted hardware wallets while leveraging the high-performance, enterprise-grade infrastructure of our validator services.
This partnership represents a commitment to enhancing user security, simplifying staking experiences, improving network diversification, and delivering superior results for Solana stakeholders.
The integration of Ledger’s technology with our validator infrastructure delivers several benefits:
Chorus One has been an integral part of the Solana ecosystem since its inception, contributing not only as a high-performing validator but also as a thought leader and innovator in blockchain research and operations.
1. Superior validator performance
Learn more about our Solana validator performance: https://chorus.one/articles/metrics-that-matter
2. MEV expertise and innovation
3. Cutting-edge research and insights
We’ve published extensively on Solana’s architecture and performance:
4. Infrastructure excellence
Our validators are deployed with enterprise-grade hardware in geographically distributed data centers. Strategic location selection maximizes connectivity and performance. Key features include:
5. Solana ecosystem engagement
Staking your SOL with Chorus One through Ledger is simple and secure:
As one of the largest institutional staking providers globally, we’re proud to offer secure, innovative, and efficient staking solutions for Solana and beyond. For further insights into Chorus One’s work in the Solana ecosystem, explore our research articles or follow us on Twitter.
Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.
Chorus One is excited to announce our partnership with Fragmetric, a leading liquid restaking protocol on Solana.
Restaking, one of the most significant innovations in the crypto space in recent years, is now arriving on Solana through Jito Restaking. This platform will leverage Solana native assets to support Node Consensus Networks (NCNs), applications that deliver services to Solana users.
While progress in liquid restaking has been impressive, the space still faces challenges that slow down its growth:
Fragmetric solves these issues with $fragSOL, an innovative liquid restaking token (LRT) powered by Solana's unique features:
Stay tuned as Chorus One shapes the future of restaking with Fragmetric and $fragSOL!
About Fragmetric
Fragmetric is a native liquid restaking protocol on Solana, with a vision of enhancing the Solana ecosystem's security and economic potential. Through implementing advantage of Solana's token extension, Fragmetric has effectively implemented NCN reward distribution. Furthermore, Fragmetric designed practical solutions, the Normalized Token Program for leveraging various LSTs in restaking platforms. Fragmetric’s mission is to build a secure, transparent, and highly efficient restaking infrastructure that empowers users and supports the stability of the Solana's restaking ecosystem.
About Chorus One
Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.
Maximum Extractable Value (MEV) is critical to blockchains, particularly on networks like Ethereum and Solana. With sub-second block times and high throughput, Solana has unique challenges and opportunities in the MEV space. Unlike Ethereum's block-building marketplace model, Solana's mempool-less architecture has led to a different MEV extraction dynamic characterized by high-speed competition and potential network congestion.
Solana's unique features, including Gulf Stream for mempool-less transaction forwarding, have enabled remarkable speed and efficiency. However, these same features have also created an MEV landscape that requires innovative approaches.
The current methods of MEV extraction on Solana have several drawbacks. Searchers competing on latency often flood the network with duplicate transactions to ensure MEV capture, leading to periods of intense congestion and failing transaction processing for all users.
The winner-takes-all nature of Solana MEV opportunities results in a high rate of failed transactions. These failed transactions still consume compute resources and network bandwidths. Studies have shown that up to 75% of transactions interacting with DEX aggregators can fail during periods of high activity.
Moreover, the concentration of MEV capture among a few players threatens network decentralization as these entities accumulate more resources and influence. In Ethereum, the use of external searchers and block-builders has led to private order flow deals, resulting in extreme centralization where a single builder creating over 50% of Ethereum blocks, with only two builders responsible for 95% and four entities building 99% of all blocks.
Paladin introduces a solution to address these issues. It consists of two main components:
The Paladin bot is a high-speed, open-source arb bot that runs locally on validators. It works only when the validator is the leader and is integrated with the Jito-client. By running directly on the validator, it captures all riskless and straightforward MEV opportunities (e.g., atomic arbitrage, CeFi/DeFi arbitrage) faster than searchers, without needing to outsource these opportunities and pay around 20% of the MEV to external entities. Any non-supported, or more advanced MEV strategies that the Paladin bot doesn’t recognize can still be captured by the Jito auction, making it a net positive for the ecosystem.
The bot listens to state updates from the geyser interface, allowing real-time opportunity detection. Validators can choose which tokens and protocols to interact with, allowing more conservative validators to alleviate legal concerns about interacting directly with tokens they deem securities.
The PAL token is designed to align the incentives of validators and users and create a robust MEV extraction mechanism. With the entire supply of one billion airdropped at launch, PAL is distributed among validators, their stakers, Solana builders, the team, and a development fund.
PAL can be staked by validators and their delegators, with rewards proportional to their SOL stake. The token has a unique MEV distribution mechanism, where 10% of captured MEV is funneled to PAL token holders, with 97.5% going back to validators and their stakers. Most staked PALs can vote to slash the staked PAL of validators who engage in dishonest actions, such as running closed-source modifications of Paladin, instead of adhering to the "just run Paladin" principle.
Paladin's design creates dynamics that contribute to its sustainability. The "Pack of Wolves" dynamic incentivizes validators to "run with the pack" by honestly running Paladin. Going against the pack risks slashing and loss of rewards. This creates a self-reinforcing system of honest behavior.
As more validators run Paladin, a flywheel effect is created. More MEV is funneled to PAL holders, increasing the value of PAL and further incentivizing participation. This alignment of long-term interests incentivizes validators to behave honestly rather than pursue short-term gains through harmful practices like frontrunning.
Moreover, by allowing all validators to participate in MEV extraction, Paladin prevents centralization while still allowing searchers to implement more specialized strategies. The bot's open-source nature and transparent reward distribution create a fairer MEV landscape, benefiting the entire Solana ecosystem.
At Chorus One, we recognize Paladin's transformative potential. We've taken the proactive step of integrating Paladin into one of our Solana validators, Chorus One Palidator.
If you have been following Chorus One, you would know we have a deep interest in MEV. Almost two years back, we open-sourced our proof-of-concept called ‘Breaking Bots’ to capture MEV on Solana efficiently and ethically. Paladin’s proposition is similar in spirit but takes a different approach with the PAL token, which was not part of our proof-of-concept.
The integration of Paladin with our validator is a significant step in addressing the challenges of MEV on Solana. We invite Solana stakers to join us in this effort by delegating to our Palidator. Let’s move towards a model that benefits all participants rather than a select few.
As the MEV landscape evolves, Chorus One is committed to exploring and implementing solutions that benefit our delegators and the wider Solana community.
Blog articles
https://chorus.one/articles/metrics-that-matter
https://chorus.one/articles/solana-mev-client-an-alternative-way-to-capture-mev-on-solana
https://chorus.one/articles/solana-validator-economics
https://chorus.one/articles/analyzing-mev-instances-on-solana-part-3
https://chorus.one/articles/analyzing-mev-instances-on-solana-part-2
https://chorus.one/articles/analyzing-mev-instances-on-solana-part-1
Podcasts
Solana's Next Big Moves: From Memecoins to Staking—What's Coming Next?
Exploring Marinade V2 and the state of Solana Staking
About Chorus One
Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.
--
There are many aspects to validator performance on Solana, and different metrics are important to different people. For users of the Solana network, throughput (transactions per second) and latency (how quickly a transaction lands) are key metrics. In this article we’ll dive into two factors that affect those: skip rate and block size. We’ll explain how Chorus One is able to outperform both network average and the superminority on these metrics. If all validators performed as well as Chorus One on these metrics, Solana would be able to process 11.4% more transactions per second.
As a Solana user, when you submit a transaction, you want it to be included in the chain as quickly as possible, as cheaply as possible. When the chain can process only a limited amount of transactions per second, that means that only users who are willing to pay high priority fees can get their transaction included. When the chain can process more transactions per second, transaction processing capacity becomes less scarce, and transaction fees go down. Solana’s throughput is determined by the validators that make up the network, so for good network performance, it is important to delegate to a validator that performs well.
For this article we look at the month of July 2024. All metrics are reported over the period from midnight July 1st until midnight August 1st in the UTC time zone. (Slot 274965076 until 280826904, for those who want to reproduce our findings.)
In this article we contrast Chorus One against two groups of validators: the entire network (including Chorus One), and the superminority. The superminority is the smallest set of validators that together control more than one third of the stake. We use the superminority from epoch 650, the final epoch in July. It consists of the top 19 validators by stake.
In the Solana network, validators periodically have a duty to produce blocks. Before the start of the epoch, the protocol sets the leader schedule, which determines when every validator has to produce a block. Validators with more stake get assigned more blocks to produce.
If all goes well, when a validator’s turn comes to be the leader, the validator produces a block. The chain grows by one block, and users’ transactions get included. When things don’t go well, the leader fails to produce a block, or the block may not be accepted by the other validators. When the leader fails to extend the chain, this is called a skip, and the fraction of blocks skipped out of blocks assigned in some period of time is called the skip rate. Skips are bad for users of the network, because during a skip, no transactions get processed. Skips lower the throughput of the chain, and delay when transactions get processed. A lower skip rate is therefore better.
A validator can skip for multiple reasons. Of course a validator that is offline will be unable to produce a block, but even when it is online and produces a block, that can still result in a skip. For example, the validator could have been slightly late, and the network has already moved on, assuming the validator skipped its duty. Many of the factors that affect skip rate are directly or indirectly under the validator’s control, but some amount of skipping is inevitable in a decentralized network. During times of high activity, skip rate is generally higher network-wide than during quiet periods. Therefore, the skip rate is not meaningful in isolation, but comparing skip rate between validators is one way to judge their performance.
Over July 2024, Chorus One achieved a skip rate of 2.03%, while the network-wide skip rate was 5.19%. This means that average Solana validators fail to produce their blocks more than 2.5 times as often as Chorus One.
Maybe network average is not a fair comparison though? It may be the case that a few bad validators are pulling up the average. So let’s look at the superminority, the top validators by stake. This relatively small set of validators has the responsibility to produce one third of the blocks, so its influence on the chain’s throughput is large. Over July 2024, the superminority together achieved a skip rate of 5.68%, which is even worse than network average. Superminority validators fail to produce their blocks almost 3× as often as Chorus One.
The Solana network is effectively leaving 3.3% of its blocks on the table by keeping stake delegated to validators with high skip rates.
Aside from skip rate, a major factor for throughput is the number of transactions that every block contains. When blocks can fit more transactions, the throughput of the chain goes up. When validators are able to build larger blocks, fewer user transactions have to be postponed to the next block, so latency goes down. Furthermore, more capacity means lower transaction costs.
Over July 2024, blocks produced by Chorus One contained on average 1696.2 transactions. (This includes vote transactions that contribute to Solana’s consensus mechanism.) The network-wide average over this period was a mere 1573.3 per block. This means that Chorus One includes 7.8% more transactions per block than average validators.
Again, let’s compare this to the validators with the greatest responsibility and disproportionate impact on chain-wide throughput: the superminority. Here we see that with 1640.6 transactions per block, the superminority does outperform the network average, but nonetheless Chorus One outperforms the superminority by 3.4%.
This means that the Solana network is effectively leaving a 7.8% throughput boost on the table, by keeping stake delegated to low-performing validators. This number is only for produced blocks, we don’t count skips as zero transactions per block. This means that the 7.8% boost would come on top of the 3.3% skip rate boost. Combined, this means that Chorus One achieves 11.4% more transactions per second than average validators.
Why is Chorus One able to process 11.4% more transactions per second than other validators? As is often the case with performance optimization, there is no single trick, but if you stack enough small optimizations, the combined result can be substantial. A few of the techniques we use:
In this article we highlighted two key Solana performance metrics that matter for users of the network: skip rate and block size. Lower skip rates and larger block sizes mean that users can get their transactions included faster and for a lower fee. These two metrics contribute to how many transactions per second Solana can process. Through multiple optimizations and operational practices, Chorus One achieves 11.4% more transactions per second than the network average. If all delegators would delegate to validators who perform as well as Chorus One, Solana would be able to process 11.4% more transactions per second.
About Chorus One
Chorus One is a leading institutional staking provider, securing over $3 billion in assets across 60+ Proof-of-Stake networks. Since 2018, Chorus One has been a trusted partner for institutions, offering enterprise-grade solutions, industry-leading research, and investments in cutting-edge protocols.
We are thrilled to introduce our latest product, Chorus One SDK. This advanced toolkit is set to transform how our customers integrate staking functionalities into their applications. As the leading staking provider with the most extensive network support in the industry, robust security features, and comprehensive transaction management, our SDK (Software Development Kit) is poised to become an essential tool for institutions and developers, enabling them to leverage enterprise-grade staking solutions across all major networks including Ethereum, Solana, TON, Avalanche, Cosmos, NEAR, and Polkadot with unparalleled ease and efficiency.
The Chorus One SDK is an all-in-one toolkit for building staking dApps or implementing programmatic native staking into your product. It supports non-custodial staking on various networks validated by Chorus One. With this SDK, our customers can build, sign, and broadcast transactions, as well as retrieve staking information and rewards for user accounts.
Chorus One has the most extensive network support for staking in the industry. Currently, the Chorus One SDK provides support for the following networks, with plans to expand to even more in the future:
The Chorus One SDK is designed for a diverse audience, including:
By using the Chorus One SDK, our customers can easily integrate programmatic native staking, access detailed staking position data, and minting of osETH LST to offer flexible staking options to their end users.
At Chorus One, we prioritize security, transparency, and user control. Our decision to develop an SDK over a traditional API was driven by the following considerations:
Enhanced Security
Verifiable Trust and Transparency
Open-Source and Auditable
💡 Why does it matter?
Choosing the Chorus One SDK means prioritizing security, transparency, and user empowerment. With local transaction building and signing, and open-source transparency, users can confidently participate in staking activities across supported networks.
Our SDK offers a robust suite of tools for managing staking operations on various networks. Here’s a high-level overview of its functionality:
Comprehensive Transaction Management
Detailed Information Retrieval
Integrated Validator Support
Command Line Interface (CLI)
For more detailed information on how our SDK works and technical guides, explore the following resources:
The launch of Chorus One SDK marks our commitment to simplifying staking. By equipping our customers with all the necessary tools, we enable them to effortlessly integrate and deliver an exceptional staking experience to their end users.
If you’re an institution, wallet provider, asset manager, or developer looking to integrate staking into your product or would like to learn more, reach out to us at staking@chorus.one.
About Chorus One
Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 60+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.
Category | Details |
---|---|
Chorus One Validator Address | Chorus6Kis8tFHA7AowrPMcRJk3LbApHTYpgSNXzY5KE |
Wallet | Phantom, Solflare |
APR | 6% |
Block Explorer | https://solanabeach.io/ |
Staking Rewards | https://www.stakingrewards.com/earn/solana/ |
Navigate to https://phantom.app/ to create or restore your Solana wallet.
If you do not have a wallet yet, you should create a new wallet and note down the seed phrase and store it in a safe place. Follow the onscreen instructions and make sure to fund your wallet with some SOL tokens before you proceed with staking
Make sure to not share or lose the secret recovery phrase (mnemonic)
If you already have a wallet, you can restore it on Phantom using the associated seed phrase. Follow the online instructions to restore your SOL account.
Once you entered the 12 or 24 words you can then restore your wallet and optionally set a password on your account.
Once you have funded your Phantom wallet with Solana, you can click on the Phantom extension to see your account details.
Once logged in, you will be able to view all the SPL assets that you possess. If you do not already have SOL tokens you can get them from a friend or buy them off-exchange and transfer those to your wallet.
Once you do that you will be able to see the SOL tokens in your wallet.
Go ahead and click your SOL balance and on the top right, you will see 3 dots. Click the dots to reveal the staking menu. Click the menu-item Stake SOL
You will be shown a list of validators along with a search button. Go ahead and type Chorus One in the search panel. Chorus One's validator will show up. Go ahead and click on the validator name.
Choose the amount of SOL you would like to stake and click on Stake
Make sure to leave some SOL in your account to pay for the transaction fees
Once you click Stake you will immediately see that your wallet is staking your SOL to your chosen validator. You can also click on the View Transaction link to see the status of your transaction in a blockexplorer. If you look at the Confirmations field you can slowly see it increasing from 0 to 32. Once it reaches the MAX number of confirmations your transaction gets added to the blockchain
Make sure to note down the transaction hash or the link provided on the screen. This allows for easier debugging in case of a failed transaction.
After your transaction is successful you can go back to your Phantom wallet, click on the Solana balance, and see your stake accounts.
Congratulations! You are now staking your SOL!
If you click on your stake accounts you will see that your stake is activating. It takes 1 epoch for your stake to activate. An epoch in Solana lasts for approximately 2-3 days. After this period your stake will show up as active and will start earning rewards.
If you click on your stake balance, you will be given the option to unstake. Unstaking also takes an epoch. Once you click Unstake your stake will start deactivating and will become fully inactive after a maximum of 3 days (1 epoch).
After the stake become inactive you can withdraw it back to your Solana account
At Chorus One, we pride ourselves in being a full-stack partner to the protocols we choose to operate and support. This goes beyond the highly available infrastructure we provide to secure and maintain networks. It includes assisting in ecosystem-building via our ventures and business development teams, as well as participating in network governance and — most notably — deep research. Since our inception, we have been at the forefront contributing to core topics of interest in Proof-of-Stake such as liquid staking.
In recent months, we have shifted a big part of our research focus onto a complex topic that underpins the core fabric of any crypto protocol: MEV (Maximal Extractable Value). This emerging field deals with the value that can be extracted through reordering transactions in the block production process. (A collection of resources on MEV can be found here).
MEV has become an ubiquitous topic for many ecosystem participants. Primarily being a validator, our position in the network places us at a spot within the MEV supply chain that comes with great power, thus also great responsibility. Generally speaking, our mission is to maximize freedom for crypto users and to contribute to the creation of long-term sustainable, user-owned decentralized network infrastructure. Since MEV is a crucial domain that — if not adequately dealt with — might threaten the mission we are set towards; we recognized that we should leverage our expertise and resources to contribute to the MEV space in a way that ultimately benefits networks and their users.
The goals we want to contribute towards in the MEV space are two-fold. On one hand, we aim to make visible and help minimize extraction of value from users through e.g. front-running, sandwiching, and other exploitative practices. On the other hand, we strive to redistribute revenues from non-exploitative MEV that comes into existence from market inefficiency to our delegators that contribute security to the underlying network.
The rest of this article lays out the core pillars of our approach to MEV providing examples of our existing and planned engagements in the area.
What is MEV and how does it impact networks and their users?
Before deciding how we should engage with MEV, we seek to understand what we are dealing with. We are proponents of the open-source crypto ethos and don’t want to keep the information we are gathering to ourselves, but rather share it with the wider ecosystem. Thus, the first pillar of our MEV policy is Transparency. We are actively researching, building dashboards, and publishing other materials to create a shared understanding and to help lighten up the “dark forest” that is MEV.
Our exemplary work in the MEV Transparency domain: Dune Analytics Ethereum MEV dashboard, MEV Extraction Twitter bot, various MEV-related articles (e.g. our series on MEV on Solana).
How can we help to minimize negative externalities of MEV?
As a result of our research effort, we deeply understand MEV in the context of the ecosystems we are a part of. We recognize that MEV can pose negative externalities to users and ultimately the protocols they are trying to utilize. We are actively engaging to help minimize negative externalities in various ways, depending on how deep our engagement in the respective ecosystem is. This can include creating awareness and participating in the dialogue around MEV, research on related problems, as well as supporting and building solutions seeking to minimize exploitative MEV and to decentralize MEV extraction.
Our work in the Network Sustainability domain: operating and participating in public discourse and communities of block building solutions such as Flashbots, investments in projects seeking to minimize front-running (including e.g. Anoma and Osmosis). We have additional projects in this domain in the pipeline and are looking into operating infrastructure to help decentralize block building and relayer infrastructure.
How can we optimize and distribute MEV rewards to our delegators?
It would be hypocritical to say we are in this for the good of it only. There are clear incentives associated with engaging in MEV. Practically speaking, we are looking to optimize the return we can achieve through MEV and pass it through to our delegators creating a differentiated service while helping to improve network usability, security, and ultimately sustainability via the first two of our MEV pillars (see also Phil Daian’s early post “MEV wat do?” on this topic).
For institutional clients that want to offer staking to their users, we are happy to assist in navigating the space and finding the optimal solutions as part of our white label staking services.
If you are building in the MEV space, are trying to understand how MEV will affect your protocol, or are interested to work with us on research topics, feel free to reach out to us through the appropriate channels:
Research: research@chorus.one
Ventures: ventures@chorus.one
Sales: sales@chorus.one
2021 was an incredible year for Proof-of-Stake. As a major staking provider, we are keen to explore new ways to give back to our delegator community that enables us to pursue our mission to advance the staking ecosystem. For this reason, we decided to initiate the first NFT airdrop to our Solana delegators (see also the official announcement post covering the basics and our reasoning for the ‘Reaction’ drop). In this post, we want to expand on our collaboration with CoherenceNFT going deeper into the background of this initiative and on how our snapshot of on-chain data is impacting the generated art.
After Uniswap’s initial $UNI airdrop, there have been many further iterations to reward initial users and to bootstrap a community of dedicated users. While some airdrops currently try to form a community based on on-chain activity without much of a product (see $SOS and $GAS), others are trying to bring valuable users into their communities; this can especially be seen in the Cosmos ecosystem. Here, Osmosis led the way by airdropping a large portion of tokens to valuable Cosmos community members, an example many others are following, a recent ambitious example being the Evmos Rektdrop. As a validator, we found ourselves in a slightly different situation. We already have a sizable community of delegators earning rewards on their staked assets with us and we wanted to give them something unique to thank them for their support while working towards a larger goal.
We realised that NFTs could serve as a gateway for our ambitions to form an engaged community enabling us to reward our most valued supporters in a crypto-native way. Ultimately, we aim to weave NFTs — including the Reaction drop — into our products and services in creative ways. Stay tuned and hold onto your Reaction NFTs to get access to unique benefits as we explore the possibilities enabled by them!
We decided to begin in the Solana ecosystem, to which we attribute a lot of our success and which has a flourishing NFT ecosystem and low fees; uniquely enabling our initial concept: a large-scale NFT airdrop that is using on-chain data to create art with differing rarities based on our delegators’ profiles. We took a snapshot of the stake accounts delegated to the Chorus One public validator on Dec 8th, set a threshold for delegations of above 0.1 SOL, and aggregated addresses with multiple stake accounts. This resulted in 3,600 unique NFTs which we — in collaboration with CoherenceNFT — decided to further break down into 9 rarities. The NFTs differ in qualities depending on their rarity. This applies to the colours used, which range from new stakers which are coloured in Chorus One greens, to medium duration stakers that are coloured in Solana’s brand colours, to long-term stakers that receive a mix of both. In a similar fashion, the thickness of the lines used in the artworks depends on the amount of stake going from thin for lower amounts of stake to thick for large stakers. The chosen parameters resulted in the distribution illustrated in the image below.
Conclusion
We are thrilled to have started our foray into NFTs and are looking forward to expanding this effort and engaging with various other web3 tools complementing our services. Stay in the loop by jumping onto our Discord, Telegram or showing us your NFTs on Twitter. And while you do that, why not consider staking with us too? Who knows, you could lay your hands on another surprise NFT in the future!
We want to thank CoherenceNFT for this collaboration and are looking forward to engaging with other artists and projects in the NFT space in the future!
I’m excited to work with Chorus One to grow the Solana NFT community by creating an asset to expand the benefits offered to Chorus One stakers. More companies entering the NFT space are making NFT utility and adoption a reality. I’m hoping a broader and more diverse set of businesses and creators are inspired by this to make use of blockchains as a way to fulfil their visions. From a creative point of view, it was really challenging and inspiring to use a new creative mode, where I had to design in advance to reward different ranges of users according to the desired characteristics of the Chorus One team
CoherenceNFT
Yesterday, Lido for Solana went live on Solana mainnet. In about 24 hours since launch, around $7m worth of SOL have already been staked with Lido by over 400 accounts.
Now that these stakers have unlocked all this liquidity, the biggest need of the hour is to enable them to utilize it in DeFi protocols.
We understand that and we’re thrilled to announce that we are live on two AMMs — Saber and Raydium.
Saber, the leading cross-chain stablecoin and wrapped assets exchange on Solana, has launched the stSOL/SOL pool currently holding roughly $300,000 in liquidity.
Raydium, an automated market maker (AMM) built on the Solana blockchain which leverages the central order book of the Serum decentralized exchange (DEX), have launched a first stablecoin pool with stSOL
In the near future, another stSOL liquidity pool with an ETH pair will be launched on Raydium.
Raydium’s AMM aggregates Serum’s central limit order book, meaning that pools have access to all order flow and liquidity on Serum. For stSOL the following two markets exist on Serum:
In addition to these integrations, we are working with Mercurial Finance to go live with a stSOL/SOL pool that will use our internal price oracle to create a maximally efficient liquidity pool.
Keep a lookout for this and further upcoming integrations at https://chorus.one/products/liquid-staking
We are thrilled to announce the launch of Lido for Solana. Lido, the leading protocol bringing liquidity to staked assets on Ethereum and Terra, has expanded its offering to Solana. Lido’s liquid staking token for Solana — stSOL — allows its holders to passively earn Solana staking rewards with a diversified set of professional node operators while retaining the ability to collateralize their stake in DeFi applications such as liquidity pools or lending protocols.
Over $6bn have already been staked with Lido by more than 29000 stakers making Lido the largest non-custodial staking protocol for Ethereum and Terra. This overwhelming confidence in Lido’s liquid staking products will only grow with the addition of Lido for Solana to the cohort. As is true with other Lido staking products, Lido for Solana is going to integrate with a number of decentralized finance applications making it easy for stSOL holders to earn passive rewards!
Lido for Solana makes the value locked in staked SOL tokens accessible by issuing stSOL in exchange. Lido for Solana makes Solana staking extremely attractive by providing
Liquid staking circumvents the opportunity cost of having your tokens locked up in a PoS protocol.
In Proof-of-Stake (PoS) networks, users participate in securing the network by locking up their tokens. They get rewarded as a result in the form of native tokens. The staking assets are used as collateral to register validators in the consensus process. This means that while assets are staked, they are held in an escrow on the network. Consequently, staked assets are inaccessible to the token holder while they are being used to secure the network.
Another restriction in most PoS protocols is that even when a token holder decides to exit a staking position, they are only able to do so with a delay. This is most commonly referred to as the unbonding period. In Solana, this period is known as the deactivation/cooldownand lasts for approximately 2–3 days (1 epoch). There are many costs associated with such illiquidity.
Liquid staking circumvents the opportunity cost of having your tokens locked up in a PoS protocol. In liquid staking, the staked positions are tokenized and derivative tokens are issued. These derivative staked tokens are a claim to the underlying, illiquid staking positions and become the liquid representation of the native token. These liquid tokens can be used in various financial products thereby enabling stakers to earn additional yields and manage their liquidity risk exposure.
Liquid Staking on Solana issues liquid tokens called stSOL which can be used in various DeFi integrations available on the platform. Liquid staking for Solana is available on mainnet at https://solana.lido.fi
After approving your transaction you will see the new stSOL balance reflected on the widget.
Head over to the DeFi integrations section at https://chorus.one/products/liquid-staking/ and choose your preferred DeFi Integration. Alternatively, visit https://lido.fi/lido-ecosystem to explore the latest decentralized applications where you can use the stSOL token.
chorus.one
The complete documentation for the project can be found at https://chorusone.github.io/solido/. Head over to the page to explore staking guides and other technical resources.
The launch on the Solana mainnet was preceded by 2 security audits and an ongoing bug bounty program, highlighting the importance placed on the security of the protocol. The complete source code for the on-chain program has been made publicly available and can be accessed at https://github.com/ChorusOne/solido
github.com
Join the liquid staking revolution by heading over to the widget!
Further information and the latest updates on Lido for Solana can be found on the official website.
Chorus One offers staking services and builds protocols and tools to advance the Proof-of-Stake ecosystem.
Website: https://chorus.one
Twitter: https://twitter.com/chorusone
Telegram: https://t.me/chorusone
Newsletter: https://substack.chorusone.com
Lido, the largest liquid staking project on Eth2 and Terra, is looking to expand its offering to the high-performance blockchain Solana. Chorus One is building this service for Lido. 3 months ago we submitted the proposal to build Lido for Solana. The proposal received support from an overwhelming majority of LDO holders.
Over the last 3 months, we have made rapid progress behind the scenes. This is the story of our journey in building the liquid staking solution for the fastest blockchain in the world
‘Lido for Solana’ is a Lido-DAO governed liquid staking protocol for the Solana blockchain. Anyone who stakes their SOL tokens with Lido will be issued an on-chain representation of their SOL staking position with Lido validators, called stSOL. This will allow Solana token holders to get liquidity on their staked assets which can then be traded, or further utilized as collateral in DeFi products
On the 30th of April, 2021, Chorus One submitted a development proposal to the Lido DAO as a snapshot vote. The proposal was to build a Lido-operated liquid staking protocol for the Solana blockchain
The proposal was put to vote on the 6th of May and every LDO holder was invited to participate. The proposal received overwhelming support. 79 LDO holders holding 96.85m LDO voted exclusively in favor of the proposal.
The proposed design is centered around a liquid staking token, called stSOL, that will accrue staking rewards and represent staking positions with Lido validators on Solana.
medium.com
The stake deposited to the Lido contract on Solana will be distributed to these validators following a logic similar to the Lido Ethereum liquid staking solution. Lido on Solana will have a fee mechanism similar to that on Ethereum which allows splitting of fees between node operators and the Lido treasury (e.g. to be used for the insurance fund). Lido node operators, as well as parameters such as the fee, will be controlled via the governance of LDO holders on Ethereum. Additionally, in the initial version, governance decisions will be carried out via a Multisig controlled by Lido stakeholders on Solana.
We started building Lido for Solana in April 2021. Towards the end of June, we made the codebase audit-ready and we got it audited by Bramah Systems. We have now made the source code public for the whole world to review. In line with the design, we are performing a Multisig ceremony with 7 participants on the Solana testnet. Soon we will be announcing a bug bounty on Lido for Solana.
Lido’s first design was inspired by the Stake Pool program in the Solana Program Library (SPL). In fact, our first version wrapped over the SPL stake pool. However, over time we swapped out the Stake Pool program for a different approach. The end result is a Lido program — similar to the Stake Pool program — but with key differences.
#2 — By doing so all validators get the same fee percentage, which may be lower than that of the node they operate publicly, and by making it 100% commission, we encourage delegations to Lido.
After extensive in-house testing, we commissioned an audit from Bramah Systems. We addressed all issues identified during the audit and re-enforced the security of the Solana program. However, in order to hold Lido to the highest security standards, we are looking for an additional audit.
In a nutshell, the audit covered the following aspects
In order to trust any program with your funds, two things need to be true:
A prerequisite for these is having access to the source code. Therefore, we have made our codebase public for everyone to view. Anyone can visit the Lido for Solana repository, where we have published the source code under the GPL V3 license — https://github.com/ChorusOne/solido
github.com
The documentation for the project can be found here.
To make our project even more robust, we are going to announce a bug bounty for developers to test the project for exploits.
We will be announcing the exact scope, prioritized vulnerabilities, and rewards categorized by threat level on our web page and on Twitter in the coming weeks.
We decided on using multisig governance for the Lido program. Before we get to the details of our Multisig program, let us see why we need it in the first place.
Programs on Solana can be upgraded unless upgrades are explicitly disabled, and this gives the upgrade authority (the address that can sign upgrades) a lot of power. After all, it could upload a new version of the Lido program that withdraws all Lido funds into some address and runs away with the funds. On the other hand, if we don’t allow the program to be upgraded at all, and then if it turns out to contain a critical bug, we can’t fix it. A multisig is a good middle ground, where no single entity can take control over the programs and their funds, but we can still enable upgrades.
Multisig Programs/addresses require multiple signatures to approve a transaction. These are smart contracts that enable multiple signers to review an action on the blockchain before it is executed. This allows for decentralized governance. Chorus One used the Serum Multisig program to introduce decentralization in Lido for Solana. This multisig has N=7 participants and requires at least M=4 of them to sign for a transaction to be approved.
The complete multisig ceremony will be covered in a later post dedicated to just that.
It is important to note that the role of the multisig is not to make independent decisions regarding Lido for Solana, but only to execute decisions made by the Lido DAO. The 7 parties that comprise the multisig are
Node operators are crucial to the success of this project. Evaluating and onboarding a responsible node operator is an important step. Shortly after the Lido DAO was initiated, the Lido Node Operator Subgovernance Group (LNOSG) was formed. This group was tasked to onboard and represent node operators in the DAO structure.
With the announcement of a proposal for Lido for Solana, we also announced the onboarding of operators for it. Any node operator that wants to apply could do so by filling up a form.
The frontend for interacting with Lido for Solana (currently pointing to Devnet) is here. We have integrated 5 Solana wallets with the frontend — Phantom, Solflare, Ledger, Solong, and Sollet.
Apart from that, we are exploring integrations with the following DeFi applications to utilize stSOL’s liquidity.
Any projects that want to reach out for integration can do so by sending us an email at support@chorus.one
Going ahead we are looking for another audit of our code. That coupled with the results of bug bounty will put us on the path to the mainnet launch. Stay tuned for the latest announcements at https://twitter.com/ChorusOne
Our content is intended to be used and must be used for educational purposes only. It is not intended as legal, financial or investment advice and should not be construed or relied on as such. The information is general in nature and has not taken into account your personal financial position or objectives. Before making any commitment of financial nature you should seek advice from a qualified and registered financial or investment adviser. Chorus One does not recommend that any cryptocurrency should be bought, sold, or held by you. Any reference to past or potential performance is not, and should not be construed as, a recommendation or as a guarantee of any specific outcome or profit. Always remember to do your own research.
Chorus One is offering staking services and building protocols and tools to advance the Proof-of-Stake ecosystem.
Website: https://chorus.one
Twitter: https://twitter.com/chorusone
Telegram: https://t.me/chorusone
Newsletter: https://substack.chorusone.com
Lido, the largest liquid staking project on Eth2 and Terra, is looking to expand its offering to the high-performance blockchain Solana. Chorus One is building this service for Lido.
‘Lido for Solana’ is a Lido-DAO governed liquid staking protocol for the Solana blockchain. Anyone who stakes their SOL tokens with Lido will be issued an on-chain representation of SOL staking position with Lido validators, called stSOL. This will allow Solana token holders to get liquidity on their staked assets which can then be traded, or further utilized as collateral in DeFi products. We will work to integrate stSOL widely into the Solana DeFi ecosystem to enable stSOL users to make use of their staked assets in a variety of applications.
Lido for Solana gives you:
The Lido DAO is a Decentralized Autonomous Organization which governs and enables the development of liquid staking solutions for different blockchains.
The first liquid staking protocol solution was built for Ethereum — and now Lido is expanding to different blockchain networks. Chorus One recently proposed a plan to build “a liquid staking token that will accrue staking rewards and represent staking positions with Lido validators on Solana”. The stake deposited to the Lido contract on Solana will be distributed to these validators following a logic similar to the Lido (stETH) on Ethereum. Lido on Solana will have a fee mechanism similar to that on Ethereum which allows splitting fees between node operators and the Lido treasury (e.g. to be used for the insurance fund).
Lido’s decentralized organization brings together the industry’s top staking providers, decentralized finance projects, and investors. The Lido DAO eliminates dependence on a centralized authority, thereby removing the risk of a single point of failure. Distributed governance also fosters a stronger community!
Solana is an extremely fast, and censorship-resistant blockchain that has witnessed tremendous growth and adoption in the last year. Solana serves transactions at an order of magnitude higher rate when compared to base layer Ethereum. Additionally, there is a flourishing ecosystem emerging around Serum and other DeFi protocols such as Raydium, Oxygen, Pyth Network, and others that are being built on Solana. With over $14bn staked, Solana is now also in the Top 5 of Proof-of-Stake networks by staked value.
Liquid staking takes the utility of Solana a step further by:
Lido for Solana not only makes it very easy to stake but also provides further utility through stSOL. Let’s look at the process in slight detail. A SOL token holder connects their wallet to an interface that supports Lido (one will e.g. be hosted at https://stake.lido.fi) and deposits their tokens into the Lido program. They immediately receive stSOL tokens that represent a share of the total pool. Every user’s tokens are held in a pool controlled by the Lido program.
The Lido program collects the deposited SOL and releases the newly minted stSOL to the user. Beneath the layer, the Lido Program distributes this SOL uniformly across validators participating in the Lido Program. When these delegations accrue rewards on the allotted stake, the total SOL under pool management increases and this increases the value of stSOL tokens. The Lido DAO governs the Lido Program — and also controls the list of validators that are part of this program.
Let’s compare this to traditional Solana staking, where a user has to perform a number of steps:
Furthermore, in traditional staking, if the user wants to diversify her stake across validators she would have to create and manage stake accounts for each validator.
Staking SOL through Lido will come with a variety of benefits:
Interestingly, there is no waiting time for receiving stSOL tokens. When a user delegates their SOL tokens they do not need to perform or wait for the completion of any delegation or activation steps, as is the norm in traditional staking. The user can instantly exchange stSOL for SOL at any time in the open market.
In Lido for ETH, withdrawals from the Lido program are blocked until the ETH2 chain is live. In Lido for Solana, staggered withdrawals will be enabled. These direct withdrawals will take a couple of epochs to process, and will be beneficial for large withdrawals (e.g. because there will be no slippage from trading on the open market). However, for small withdrawals exchanging stSOL on a DEX (e.g. to SOL) will likely prove to be the go-to solution in order to exit a staking position with Lido for most of the users.
Reward distribution in ‘Lido for Solana’ is an interesting deviation from how rewards are distributed in Lido for Ethereum, which pegs ETH2 to stETH in a 1:1 ratio.
To understand how rewards work for ‘Lido for Solana’ let’s look at a hypothetical scenario. Let’s assume that the pool contains 2000 SOL and while we are at it let us also assume that a total of 1800 stSOL are held by the token holders. This puts an exchange rate of 0.9 stSOL per SOL.
If Alice deposits 1 SOL now she will get 0.9 stSOL in return. As rewards accrue SOL balance goes up, let’s say from 2000 to 2100. The new exchange rate becomes
Now if Alice goes and enquires about the value of her 0.9 stSOL, she finds it to be
Effectively, her SOL balance potentially went up by 5% from 1 SOL to 1.05 SOL. This approach is called the share-pool approach. Even though the numbers here are hypothetical they represent the concept of rewards accurately.
Note
The accrued rewards here are after a fee cut for Lido maintainers. To incentivize sustainable management of the Lido ecosystem, a portion of the rewards is split between the node operators and DAO treasury. The remaining larger chunk (on Ethereum, these amount to 90%) of rewards accrue to Lido users and get reflected in the increased value of stSOL as explained above.
Lido for Solana doesn’t follow the pegging approach, followed by ETH and stETH, as of now. However, this might be considered for revision when Solana launches native support for rebasing in SPL tokens.
The stSOLs that one gets can be used to reap secondary rewards through DeFi protocols. There will also be liquidity pools on AMM protocols and other DEXes where one will be able to immediately exchange stSOL for SOL. For the ETH<>stETH pair a popular AMM in terms of liquidity and volume is the Curve pool.
Withdrawals of SOL from the Lido program will be rolled out after the initial MVP that is expected later this summer. As mentioned above, instant withdrawals will be available in the open market. Once activated, withdrawal from the Lido pool will take a couple of epochs. This process is intentionally staggered to avoid bank-run scenarios.
As discussed in the rewards section a portion of the rewards goes to the Lido DAO treasury. The amount that goes to the Lido DAO treasury can be potentially used for different purposes
The Lido DAO is the deciding authority on the various parameters of the ecosystem. Things like fees, upgrade approvals, validator set, voting mechanisms, etc. are decided by the DAO. It is in the DAO’s charter to make the system run smoothly and it does so through the process of voting. To be a voter one must possess the governance token, LDO. The amount of LDO determines the weight of your vote.
Lido DAO’s governance is a key aspect of the ecosystem and holds the key to the success of Lido for Solana.
Chorus One proposed to build the liquid staking solution described here with support from the Lido DAO and the vote past with over 96m LDO in favor and 0 LDO against. Follow our Twitter handle and website to keep in touch with the latest updates.
The performance and security of a blockchain is determined by the nodes operating it. A conventional blockchain is limited by the transactional processing power of a single node in the network. To circumvent this limitation, most protocol designers come up with complex schemes to distribute work across a subset of nodes in the system. This is what we refer to as sharding. Sharding is a complex problem statement that requires well-thought out mechanisms to ensure safety and usability, especially with respect to composability of applications.
There is one team that stands out by taking a different approach to scaling a layer-1 blockchain network: Solana. Instead of trying to scale by adding more nodes, subsetting them across different blockchains, and then trying to economically link them together into one system, Solana is radically optimizing the performance of a single node on one chain (#NoSharding).
The results of this approach are astonishing: in a cluster with nodes running high-performance GPU-based validation hardware, Solana can achieve a throughput of tens of thousands of transactions per second on a single, composable, blockchain!
Sustaining this type of performance in a production environment relies on more than low-level optimization and high-end hardware. Node operators need to be able to continuously operate- even in adversarial settings-both to ensure the network stays performant, and to maximize their rewards for maintaining the blockchain.
One way to achieve this is to rely on network engineers to troubleshoot nodes in case they go down for whatever reason. This solution comes with a host of problems and is putting pressure on individuals. This makes it not well-suited for an environment seeking to be the base layer of a new financial system. Imagine getting a call at night and having to manually fix a machine that is handling large amounts of value, knowing that a mistake can become extremely costly, even catastrophic.
Another approach is to institute an automated failover system consisting of multiple nodes communicating and deciding internally which of them gets to sign blocks. Such a design comes with its own challenges, especially around ensuring that no blocks are accidentally double-signed, which would lead to large slashing penalties. So far only a very small group of teams have explored this design space, e.g. Certus One and Chorus One.
With support from the Solana team, Chorus One has dedicated resources to build and maintain software to provide high availability validation tailored to the Solana network: Solana StrongGate.
StrongGate allows validators on Solana to run redundant infrastructure with a focus on protecting against accidental double-signing. StrongGate works by using the Solana blockchain as a detection mechanism and a highly available, strongly consistent database as a resolution mechanism to determine which of the validator nodes gets to sign blocks.
Watch Chorus One’s Meher Roy present StrongGate at the first SolCon in Osaka, Japan for a detailed breakdown of the design and rationale:
We will soon share the repo and more information on how to use StrongGate for your Solana validator operation. We’d like to thank Solana for their support and we are looking forward to continuing to contribute our part to build and operate the web scale blockchain that the world deserves!
Chorus One is building validation and staking infrastructure for Proof-of-Stake networks.
We will offer staking on the Solana blockchain. You can support our work and earn staking rewards by delegating to our validator node.
Website: https://chorus.one
Twitter: https://twitter.com/chorusone
Telegram: https://t.me/chorusone
Solana is a web-scale blockchain with speeds up to 50,000 tps powered by Proof of History.
Website: https://solana.com/
Twitter: https://twitter.com/solana
Telegram: https://t.me/solanaio
Originally published at https://blog.chorus.one on November 15, 2019.