Chorus One Validator: 0x6bcBe50912a51c4d956444CCbd2F3e9dAA217CC1
Recommended Wallet: MetaMask
Block Explorer: https://bartio.beratrail.io/
Staking Rewards: https://www.stakingrewards.com/asset/berachain-bera/about
Connecting to Testnet: https://docs.berachain.com/developers/network-configurations
Berachain (BERA), currently in their final testnet phase (Cartio), is changing how DeFi users access liquidity, supercharging applications, and providing flexibility and adaptability to the thriving digital economy. It combines the capabilities of the Cosmos SDK and introduces its novel 'Proof of Liquidity' as well as their new modular implementation of the EVM called Polaris. This not only tackles current obstacles but also paves the way for fresh avenues of creativity and advancement within the DeFi industry.
Through the unique Proof-of-Liquidity (PoL) consensus mechanism, Berachain is transforming traditional staking by requiring liquidity contributions instead of merely locking assets. This innovative approach incentivizes users to supply liquidity to the network, strengthening decentralized applications (dApps) and rewarding participants for enhancing liquidity pools.
To support the PoL model, Berachain utilizes a tri-token model comprising the Bera Governance Token (BGT), the native gas token (BERA), and Honey (HONEY).
Each token serves a specific role:
BGT plays a central role in the staking process on Berachain. It grants holders governance rights, enabling them to vote on proposals that shape protocol upgrades.
Together, this tri-token model creates a robust and dynamic economic framework that aligns network security, liquidity, and governance. While currently still in its testnet phase, Berachain’s innovative model is poised to reshape blockchain staking upon mainnet launch.
Chorus One has been involved with the ongoing developments of Berachain and their new PoL model and is prepared to offer day one support for the network. Alongside this, we have created a special algorithm called BeraBoost to maximize BGT rewards for PoL participants allowing Chorus One to provide infrastructure that maximizes the performance of the PoL system, ensuring that liquidity is efficiently managed while securing the network through the use of our in-house algorithm.
Chorus One will publish our BeraBoost algorithm on day one, which optimizes rewards distribution for liquidity providers and validators on Berachain. This approach maximizes returns for BGT delegators by tracking LP positions and directs incentives to the most relevant reward vaults.
BeraBoost which will maximize delegator income by strategically distributing BGT emissions to their reward vault positions. This is a sophisticated approach that takes into account nuances like vault turnover and varying incentive liquidity.
Chorus One BeraBoost will operate on a public dashboard, providing transparent, optimized incentive capture for delegators. BeraBoost maximizes incentives taking into account delegator reward vault positions and Chorus One will continue to improve BeraBoost as the chain matures.
Berachain Testnet Links
Below are the links you can use to get started on Berachain testnet if you'd like to explore the PoL mechanisms and staking process first-hand.
Berachain Faucet: The Berachain testnet faucet is the first place to begin to get some testnet BERA.
Home | BEX: BEX is the home of the swap and liquidity provisioning features to participate in PoL.
Vaults | BGT Station: BGT Station is your all in one stop to stake your liquidity tokens and delegate BGT and interact with other features of the network.
Once you've acquired some testnet tokens, you can use BEX to swap your BERA into different tokens you wish to provide liquidity for. For example, let's say you wanted to provide liquidity to the BERA/HONEY pool.
First, navigate to https://bartio.bex.berachain.com/swap and select how much BERA you wish to swap to HONEY.
Note: When providing liquidity, you will need to provide a roughly 50/50 distribution in value of each token. For example, $100 worth of BERA and $100 worth of HONEY.
You will see a preview of your swap, go ahead and complete the steps by approving the transaction in your wallet.
Once you have the tokens you want to provide liquidity for, navigate to https://bartio.bex.berachain.com/pools to select the liquidity pool you wish to interact with.
In this case, we will be demonstrating with the HONEY/BERA pool.
Click on 'Add' to be brought to the liquidity deposit screen. You can click on 'MAX' for either token to see what the most liquidity you can provide is based on the amounts of each token you have.
Next, click on 'Preview' and if it all looks good, go ahead and approve the transaction in your wallet and provide the liquidity to the pool.
After you've done so, you'll likely be prompted to deposit your liquidity receipt tokens to a rewards vault to begin earning BGT. (screenshot example below).
From BGT station, make sure you select the tab at the top called 'Vaults' and from there you can search for a rewards vault for HONEY/WBERA to stake you receipt tokens to.
Using the search function can be very helpful to find the vault you wish to use.
Simply click on 'Deposit' and you can stake your liquidity receipt tokens from your deposit earlier.
Enter the amount of the receipt tokens you wish to stake, then click on 'Deposit' to finalize the transaction in your wallet.
And now you've successfully participated in PoL! Your receipt tokens will begin accruing BGT rewards that you can claim and then stake with the Chorus One validator.
However, it's worth noting that BGT will not be instantly earned for your receipt token deposit, however, you will begin earning BGT from your stake in that rewards vault.
As it accrues, you can claim your pending BGT rewards.
Simply click on 'Claim Rewards' and you will claim the BGT that has accrued from the rewards vault.
If you are staking to other rewards vaults, you can see an overview of all your pending BGT rewards from: https://bartio.station.berachain.com/rewards
Once you have your BGT, you can navigate to the 'Validators' tab of BGT Station to select Chorus One.
Once on the Chorus One validator page, simply click on 'Delegate' to delegate your BGT to the validator.
Here you will see the screen where you can choose how much BGT to delegate.
After you've entered how much BGT you wish to delegate, click on 'Queue Boost' which will start the delegation process.
The delegation process is not instant. When you queue the BGT boost to the Chorus One validator, it will process in approximately 1-2 hours.
You can view the status of your delegation boost from the same page you used to delegate.
Please note that to finalize the BGT delegation, you will need to return to this page and confirm the boost after the time in the delegation queue has passed.
After you've come back and confirmed your BGT delegation to the Chorus One validator, you're all set! You've successfully delegated BGT and have boosted the Chorus One validator further, thus increasing the amount of BGT it will distribute to your rewards vault (in this case, HONEY/WBERA).
You will continue to accrue more BGT over time from your PoL positions which can be claimed from the 'Rewards' tab of BGT Station.
Converting BGT to BERA
BGT cannot be transferred to another wallet. It is soul bound to your wallet. While BGT can be delegated, it can also be converted one way in a 1:1 ratio to BERA.
Please note it is not possible to convert BERA back to BGT. This is a one way swap only.
This allows you to use your BGT rewards to either further boost the Chorus One validator or you can swap your BGT to BERA to use it for other functions in the Berachain ecosystem.
This 1:1 swap can be done from the 'Redeem' tab on BGT Station.
Simply select how much BGT you'd like to convert to BERA and click on 'Confirm' then finalize the transaction in your wallet.
And that's it -- You've now converted your BGT rewards to BERA and can use that BERA to swap in BEX or participate in other aspects of the Berachain ecosystem!
If you are an institutional investor looking to stake Berachain (BERA) with Chorus One, please reach out to us via our staking request form.
About Chorus One
Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.
Restaking is an emerging concept that has quickly become a central theme in the current crypto cycle. However, this concept is not new; the earliest example of restaking can be traced back to Polkadot’s Parachain system. Each Parachain can have its own specific use case, governance model, and tokens, but they all benefit from Polkadot’s shared security model, meaning they don’t need to secure their own networks. Instead, they rely on the Relay Chain for security, allowing the stake on Polkadot to secure other chains.
This concept has also been adopted by Cosmos through Interchain Security. The concept of Replicated Security involves one blockchain serving as a security provider for other blockchains. The blockchain that provides security is referred to as the Provider Chain, while the blockchains inheriting the full security and decentralization of the Provider Chain are called Consumer Chains.
More recently, the concept has been brought to Ethereum via EigenLayer, and projects like Symbiotic and Karak have also emerged, actively competing within Ethereum's ecosystem. On Cosmos and Polkadot, restaking is embedded directly within the protocol, in contrast on Ethereum, restaking is facilitated via smart contracts, creating a more open market where restaking marketplaces can operate independently. Here, the idea is to use ETH, ETH LSTs, or ERC20s to secure other networks, known as Actively Validated Services (AVS), in order to earn additional yield while accepting additional risks, such as slashing (which would come in the future). With Ethereum’s rollup-centric roadmap and the growth of Layer 2s, liquidity and dApps are increasingly shifting away from Ethereum Layer 1 to L2s. As a result, the core value proposition of Ethereum Layer 1 will become its economic security and large market capitalization. EigenLayer, along with other restaking marketplaces like Symbiotic and Karak, capitalizes on this by offering economic security to Ethereum-aligned external networks.
In this paper, we will provide an overview of the restaking market on Ethereum as it stands today, explore its business model and economics, and discuss the future of the restaking landscape and its challenges.
In the Ethereum restaking space, 3 prominent platforms have emerged: EigenLayer, Symbiotic, and Karak. EigenLayer has taken the lead as the first restaking marketplace to launch on Ethereum Mainnet and continues to dominate in terms of Total Value Locked (TVL), with over 4.17 million ETH equivalent.
On June 19, 2024, EigenLayer reached its peak TVL, hitting an all-time high of 5.43 million ETH equivalent before experiencing a slight decline.
Symbiotic began accepting deposits on June 11, 2024, quickly reaching its initial deposit cap of 41,290 wstETH in just 5 hours. A second cap of 210,600 wstETH was set on July 3, 2024, and was also reached within 4 hours. The last cap was introduced on August 14, 2024, coinciding with the launch of BTC deposits. These different deposit caps are clearly visible in the graph below.
Currently, Symbiotic has approximately 644,000 ETH equivalent deposited on its platform.
Note: Symbiotic has not yet launched its mainnet, users can only deposit funds at this stage.
Karak successfully launched its mainnet on October 18, 2024, marking a significant milestone for the platform. However, the protocol has attracted slightly fewer deposits compared to both EigenLayer and Symbiotic, with around 205,000 ETH equivalent deposited.
In this competitive market, despite the emergence of new platforms, EigenLayer remains the clear leader, holding approximately 6x more TVL than Symbiotic and 20x more than Karak.
A significant portion of EigenLayer's TVL is driven by Liquid Restaking Protocols (LRTs). Our analysis of the major LRTs on EigenLayer shows that they currently account for approximately 75.37% of the platform's TVL, with an all-time high of 75.46% in July 2024. This indicates that more than 75% of the TVL in EigenLayer comes from users interacting with Liquid Restaking protocols rather than directly through the EigenLayer application.
The protocols included in our analysis are EtherFi, Renzo, Puffer Finance, Kelp DAO, Swell, and Bedrock.
When examining the composition of each LRT, we can see that EtherFi is the largest LRT contributor on EigenLayer, followed by Renzo and Puffer.
There are several reasons why LRTs have become the primary liquidity source for EigenLayer and restaking platforms in general:
Looking at Symbiotic, a similar pattern emerges, with approximately 61.61% of the TVL coming from Mellow vaults and EtherFi. This highlights that a large portion of liquidity is funneled through external protocols rather than directly through Symbiotic itself.
Only about 38.39% of the total TVL has been deposited directly via the native Symbiotic app.
For Karak, the situation is a bit different. It appears that there is only one major LRT on Karak, which is EtherFi with around 17% of the TVL, while 83% of the Karak TVL has been deposited on the native app.
Let’s dive into recent movements in the restaking space. A quick look at the inflows and outflows between EigenLayer and Symbiotic suggests that large inflows into Symbiotic correspond with outflows from EigenLayer.
Based on a recent analysis from Gauntlet, covering the period from June to September 2024, approximately 1,011,000 ETH was withdrawn from EigenLayer during this time. Of this, around 170,000 ETH was moved directly to Symbiotic. However, users didn’t just transfer this amount, they added another 37,000 ETH on top, making a total of 207,000 ETH deposited into Symbiotic.
The 207,000 ETH deposited into Symbiotic accounts for about 42.20% of the 488,000 ETH locked in Symbiotic at that time, meaning that approximately 42.20% of Symbiotic's TVL came directly from withdrawals on EigenLayer.
However, it’s important to note that only 16.5% of the ETH withdrawn from EigenLayer has remained within the restaking ecosystem, while the other 83.5% has exited the market entirely for now.
EigenLayer and Symbiotic flows, Source: Gauntlet
Restaking is supposed to allow networks, commonly known as Actively Validated Services (AVSs) in the restaking ecosystem, to quickly bootstrap a validator set and get a certain level of economic security with minimal time investment.
In this model, platforms like EigenLayer, Symbiotic, and Karak act as marketplaces where restakers, operators, and AVS entities come together. However, their goals are not the same. Here’s a breakdown:
At this point in the market, very few AVSs have clearly defined how much economic security they need or how much they are willing to offer to attract operators and restakers.
Who is restaking meant for?
Restaking has not yet found a clear product-market fit. It isn’t particularly suited for high-value, high-FDV networks, as these networks are large enough to offer large incentives, manage their own validator sets, and provide additional utility for their native tokens (for example, staking the native token to earn a staking yield, rather than paying restakers who hold a different token). It’s difficult to imagine large networks like Monad or others using restaking.
That said, restaking seems more suitable for small to medium-sized projects that don’t yet have the resources to bootstrap a totally sovereign network. Restaking allows them to grow, mature and find product-market fit before being totally sovereign without relying on 'rent' payments to holders of other tokens. However, there are also some AVSs that use restaking for very specific purposes and are not intended to be sovereign, as they bring services and value to the underlying Layer 1.
EigenDA stands out as the first AVS to distribute yield to both restakers and operators. Currently secured by around $10 billion in economic security, it has become a significant player in the emerging restaking ecosystem. However, the economics of maintaining such a network pose several challenges and require a closer examination.
Yield Distribution and Economic Security
EigenDA currently offers 10 ETH per month in rewards to restakers and operators. With a TVL used for economic security of around $10 billion, the total annual amount distributed to operators and restakers corresponds to $300,000 assuming the price of ETH at $2,500. Assuming an economic security of $10 billion, this represents a gross APR of just 0.003%.
This low yield highlights a key challenge in the restaking model: balancing the need for economic security with adequate incentives for participants.
The Cost of Running an AVS
The cost of operating an AVS varies based on the specific infrastructure and requirements needed for it, but on average, we estimate the monthly infrastructure cost to run at around $400 per AVS. Over the course of a year, this represents approximately $4,800 for a single AVS. With 18 AVSs currently in the market, the annual cost for one operator to run all of them comes to $86,400. It’s important to note that this figure does not account for additional expenses such as the salaries of the DevOps teams required to maintain and secure the infrastructure.
EigenLayer currently has 340 operators running at least one AVS each. If an AVS wants to fully leverage the economic security provided by EigenLayer while ensuring that operators cover their infrastructure costs, the financial commitment grows significantly. The formula is simple:
• $400 per month per operator
• 340 operators
This results in a total annual infrastructure cost of $1.63 million. And that’s just for maintaining the infrastructure by 340 operators, it doesn’t include the incentives that need to be paid to restakers.
Cost for an AVS to cover infrastructure costs
EigenLayer has introduced programmatic incentives to maintain its TVL on the platform. You can track the yield from these incentives here. EigenLayer is distributing 16,736,467 EIGEN to Eigen restakers and operators over one year, and 50,209,400 EIGEN to ETH and ETH LST restakers. This not only supports the restaking economy but also helps AVSs to take the time to find ways to incentivize operators and restakers.
In most cases with restaking, AVSs that aren’t yet generating revenue will likely introduce a native token to incentivize restakers. This means they will use their native token to compensate ETH restakers or other ERC20 restakers. As a result, restakers who may simply prefer their rewards in ETH or a specific ERC20 token, are likely to automatically convert these AVS rewards back into their preferred tokens.
Economically, this model is fundamentally weaker than a traditional Proof of Stake system. In traditional staking, participants buy the native token, show commitment to the project, and stake to earn rewards. Since they’ve invested in the native token, they are more likely to hold onto their staking rewards longer than restakers who receive AVS rewards.
In today’s restaking market, there are also auto-compounding products that automatically convert restaking rewards into ETH to boost the restaked position, which encourages immediate selling of AVS tokens.
As slashing goes live, we expect restakers to pay closer attention to the operators they select, particularly the quality of services offered. Additionally, TVL growth will likely be driven by operators’ ability to deliver the best risk-adjusted returns.
Marketplaces are expected to become more flexible, with leading AVSs establishing caps on the amount of security they require or incentivize. The evolution of TVL numbers for AVSs is likely to change as soon as the activation of slashing and yield mechanisms will encourage each AVS to set limits on the TVL they incentivize. This implies that delegations to each AVS will be limited, or yields will be diluted, as AVSs aim to avoid paying for excess security they don’t need.
The introduction of a new security model that distinguishes between "unique" and "total" stake will reshape distribution.
We anticipate different methods by which AVSs will compensate operators for providing security:
At this stage, we believe the leading node operators will benefit in two key ways:
This change in economic conditions could impact major Liquid Restaking Protocols. They attracted substantial liquidity thanks to their own incentives in native tokens, but they now have billions in economic security to provide to AVSs, which, on the other hand, will be difficult to incentivize given the high amount to incentivize for the AVSs. What we see is the following:
To be sustainable, the best LRTs must offer at least the Ethereum staking yield and compete directly with Liquid Staking Tokens (LSTs). This is why many LRT protocols accept native ETH (such as EtherFi, Renzo, Swell, etc.). Even if the restaking yield isn’t significant, users still gain exposure to an LST+ protocol, meaning they receive the benefits of liquid staking as a baseline, with potential upside if the restaking yield becomes attractive.
The Ethereum restaking ecosystem has unlocked new possibilities, enabling small to medium-sized projects to leverage Ethereum’s economic security. While restaking offers significant advantages, its current economic model and design face some challenges. As Ethereum restaking continues to evolve to address these issues, we can expect increased collaboration between AVSs and leading operators, fostering a stronger and more sustainable ecosystem for restakers.
Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.
The TON blockchain has emerged as a promising platform, but for institutions (wallets, exchanges, custodians etc.) looking to offer Toncoin staking to their customers, current options come with serious limitations. From high staking minimums to complex pool management, existing solutions fall short of meeting the needs of large-scale, flexible staking.
Recognizing this gap, we have launched TON Pool – a staking solution designed to meet the unique requirements of institutional players while making Toncoin staking simpler, more efficient, and scalable.
The TON ecosystem currently offers the Nominator Pool and Single Nominator contracts as staking options. However, both models restrict the number of delegators and impose high minimum stake requirements, which limits accessibility for larger institutions that manage staking services for numerous clients. These limitations force institutions to distribute stakes manually across multiple pools, adding operational complexity and increasing transaction fees, while impacting the final yield. (We covered the current TON staking mechanisms in detail here.)
With these pain points in mind, we saw an opportunity to create a tailored solution that eliminates these barriers and optimizes staking for our customers needs.
TON Pool addresses the shortcomings of current models by providing a flexible, high-efficiency staking solution that scales for larger institutions and various service providers. TON Pool aggregates Toncoin from an unlimited number of users into a single pool, offering seamless in-protocol distribution across multiple validators and removing the need for complex management. The result? A more streamlined, cost-effective, and yield-optimized staking experience for institutions and their customers.
TON Pool is designed for:
One of the most significant advantages of TON Pool is its streamlined staking flow. Here’s a comparison of how staking works with traditional models versus TON Pool:
With TON Pool, customers no longer need to juggle multiple addresses or pay per transaction. Instead, they delegate once, paying a single fee, while all technical complexities are managed seamlessly within the protocol.
“TON Pool is our answer to the challenges institutions face when staking on the TON blockchain. We built this solution to remove unnecessary steps, lower costs, and provide a scalable option for institutions that require a higher degree of flexibility. TON Pool makes staking more accessible and profitable, which we believe is essential to driving the TON ecosystem forward,” - Brian Fabian Crain, CEO, Chorus One.
For more details about TON Pool and to get exclusive discounted commission rates, reach out at staking@chorus.one, and sign up now to be among the first to experience streamlined, scalable Toncoin staking.
Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.
Our latest episode welcomes Bo Du, Founder of Polymer Labs! 🔥
In this episode of the Chorus One Podcast, hosted by our Research Analyst, Kam Benbrik, Bo shares his journey from Web 2.0 to DeFi and discusses the mission of Polymer Labs in enhancing blockchain interoperability.
Key topics include the intricacies of rollup mechanisms (OP stack vs. Arbitrum), the importance and challenges of blockchain interoperability, and Polymer's integration with the Cosmos ecosystem. Bo also explores the future of scalable infrastructure, the trade-offs in decentralizing sequencers, the economic implications of ZK technology, and the incentivization of relayers in the IBC ecosystem.
🎧 Latest Episodes You’ll Love:
Solana's Next Big Moves: From Memecoins to Staking—What's Coming Next?
Exploring Marinade V2 and the state of Solana Staking
Unlocking Bitcoin's Potential with Stacks: Smart Contracts, Finality, and sBTC
About Chorus One
Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.