Blog

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Networks
TON Series #2: The mechanisms of staking TON
An overview of TON staking mecahnisms - including Nominator Pools, Single Nominator Pool, and Liquid Staking
July 16, 2024
5 min read

In Part 2 of our TON Series, we dive into TON’s staking mechanisms. We'll cover the what, why, and how of staking TON, as well as how to get started easily with Chorus One.

An introduction to TON Staking

TON leverages the Proof of Stake (PoS) consensus algorithm, a system where validators are responsible for proposing and validating new blocks of transactions. In TON's PoS model, validators are selected through a competitive election process to ensure the highest levels of security and performance.

The Election and Validation Process

The election process is central to TON staking. During each consensus round, potential validators submit their applications along with their stake and other parameters, which determines the level of maintenance they are willing to perform. The Elector governance contract evaluates these applications, selecting validators based on their stake and parameters, aiming to maximize the network's overall stake.

Once selected, validators enter a validation cycle, as depicted in the timeline diagram below:

Source: https://docs.ton.org/develop/howto/blockchain-configs#examples

Key Phases of the Validation Cycle:

  1. Election (6-7 hours): Candidates apply to become validators.
  2. Delay (2-3 hours): A brief waiting period before validation starts.
  3. Validation (18 hours): Validators approve transactions and propose new blocks.
  4. Hold (9 hours): Validators prepare for the next cycle.

To ensure continuous network operation, TON employs two types of pools—odd and even—which operate in alternating cycles, providing seamless validation without interruptions.

Minimum stake

To be eligible for the validator election process, validators need a minimum stake of

300,000 TON. Validators stake Toncoin for a fixed specific term, and the stake is refunded with interest after the completion of a validation round.

Validator rewards

Each transaction on TON requires a computation fee called gas used to conduct network storage and the transaction processing on-chain. Like most blockchain networks, on TON, these fees are accumulated within the Elector contract in a reward pool. 50% of fees users pay are burnt and 50% goes to validators.

The network also subsidizes block creation by adding a subsidy to the reward pool equal to 1.7 TON for each block in the main chain, called masterchain. TON’s architecture allows for the creation of parallel chains, called  workchains. For workchain blocks,  the reward per block is set to 1 TON. The network has an inflation rate of approximately 0.3-0.6% annually.

How does TON staking work?

TON offers several staking mechanisms to cater to different needs and preferences. Let's explore these options:

  1. Nominator Pool

The Nominator Pool is central in TON's staking ecosystem, offering a collaborative approach to staking that allows multiple users to pool their Toncoin (TON) tokens and collectively participate in the network's validation process. This pooling mechanism is designed to democratize staking, making it accessible to a broader range of participants who may not have sufficient tokens to meet the minimum staking requirements individually.

The Nominator Pool enables a group of up to 40 nominators (stakers) to combine their staking power and delegate it to a validator like Chorus One. This collective staking approach not only helps in meeting the high minimum staking thresholds but also ensures that the network remains secure and robust by leveraging the combined resources of multiple stakeholders.

Source: https://github.com/orbs-network/single-nominator

How the Nominator Pool Works:

  1. A nominator joins the pool by staking a minimum of 10,000 TON tokens.
  2. The pool collectively stakes the combined tokens through a validator. The operator managing the validator must stake at least 1,000 TON tokens which are used to protect against bad behavior.
  3. The Election Process starts: During the election phase, which lasts between 6 to 7 hours, the pool’s validator submits an application for validation, along with the combined stake from all nominators.
  4. Delay Period: After the election, there is a delay of 2 to 3 hours before the validation phase begins.
  5. Validation Cycle: The validator then participates in an 18-hour validation cycle, during which they propose and validate new blocks of transactions.
  6. Reward Distribution: At the end of each validation cycle, the rewards earned are distributed among the nominators based on the proportion of their stake in the pool.
  7. To access their rewards, nominators need to send a transaction of 1 TON to the pool with a specific comment, which triggers the return of their entire stake and earned rewards.
  8. Withdrawal: Nominators can withdraw their entire stake and rewards in one transaction. Partial withdrawals are not supported via this mechanism, necessitating a complete withdrawal of funds when accessing rewards.

To visualize the Nominator Pool workflow, consider the following diagram:

This workflow ensures continuous network validation, with odd and even pools alternating their validation cycles to maintain seamless operation and security of the TON blockchain.

Pros and Cons of the Nominator Pool

Pros:

  • Relatively low effort to set up, with support from validators like Chorus One
  • Allows multiple nominators to pool resources, making it easier to meet staking thresholds.
  • Automatically handles proportional reward distribution.

Cons:

  • The minimum staking requirements might exclude investors with less than 10,000 TON.
  • Only allows full withdrawals, which can be restrictive for nominators needing partial access to their funds.
  • Utilizes a hot wallet for operational fees, posing potential security risks.

2. Single Nominator Pools

The Single Nominator Pool is a streamlined and secure staking mechanism within the TON ecosystem, designed specifically for validators who have sufficient TON to stake independently (aka solo stakers). This approach reduces complexity and enhances security by focusing on a single nominator, making it an ideal choice for those who prefer a more straightforward staking process.

The Single Nominator Pool allows a single entity to manage the staking process, providing a simplified and secure framework for validators. By eliminating the need for multiple nominators, this mechanism significantly reduces the attack surface, making it easier to safeguard the staked assets.

Source:https://github.com/orbs-network/single-nominator

How the Single Nominator Pool Works

  1. A Single Nominator Pool is deployed by a validator like Chorus One.
  2. Only one nominator, who is also the pool owner, stakes their TON tokens. The single nominator can stake any amount of TON which should meet the protocol minimum requirement (currently 300,000 TON tokens).
  3. The nominator applies for validation by submitting their stake during the election period (6-7 hours).
  4. After the election, a delay of 2-3 hours occurs before the validation phase begins.
  5. The validator participates in an 18-hour validation cycle, validating transactions and proposing new blocks.
  6. All rewards generated during the validation cycle are directed to the single nominator.
  • Flexible Withdrawals: The nominator can withdraw any amount of their stake and rewards, offering greater flexibility compared to multi-nominator pools.
  1. The pool uses a cold wallet to store the principal staking funds, significantly reducing the risk of theft.
  2. Hot Wallet Operations: The validator uses a hot wallet to manage operational fees, ensuring that the cold wallet remains secure.

To illustrate the workflow of the Single Nominator Pool, consider the following diagram:

This simplified workflow highlights the continuous cycle of election, delay, validation, and hold phases, ensuring the seamless operation and security of the TON blockchain.

Pros and Cons of the Single Nominator Pool

Pros:

  • Easy to deploy and manage a single nominator pool.
  • Reduced attack surface via the use of a cold wallet for principal funds.
  • Allows partial withdrawals, providing greater flexibility for the nominator.

Cons:

  • Not suitable for groups or multiple nominators with smaller holdings of TON tokens.
  • Doesn’t support distribution of rewards between validator and nominator, requiring technical expertise from nominator to operate the pool, or off-chain payments.
  • All operations rely on the single nominator, which can be a limitation for shared or community-based staking.

The Single Nominator Pool offers a secure and efficient staking solution for individual validators, combining simplicity with enhanced security measures. By focusing on a single participant, this mechanism ensures that the staking process is straightforward and easy to manage, making it an attractive option for those looking to stake their TON independently.

3. Liquid staking

Liquid Staking protocols enable TON holders to participate in staking pools, lending their funds to validators at a predetermined interest rate. In return, stakers receive liquid staking receipt tokens, known as Pool Jettons, which represent their share in the pool. These tokens can be exchanged back for TON at any time, allowing stakers to maintain liquidity while earning rewards.

The protocol is user-agnostic, accommodating users of all capital sizes without any minimum or maximum stake requirements.

Source: https://ton-ls-protocol.gitbook.io/ton-liquid-staking-protocol

How TON Liquid Staking Works

  1. Users stake their TON in a pool managed by the Liquid Staking Contract.
  2. Upon staking, users receive Pool Jettons, which are liquid staking receipt tokens representing their share of the pool. These tokens ensure that users can maintain liquidity and withdraw their staked assets whenever needed.
  1. Staked funds are lent to validators, who use them for participating in the network’s validation process. Validators are chosen based on their stake and maintenance parameters during election phase, followed by a validation cycle.
  2. During each 36-hour validation cycle, validators earn rewards, which are distributed proportionally to all participants in the pool.
  3. Rewards come from interest payments made by validators who borrow the staked funds. The value of Pool Jettons increases as rewards are distributed, reflecting the growing stake in the pool.
  4. Users can deposit and withdraw their assets at any time without any predefined limits, managed through specialized smart contracts that ensure accurate accounting and security.

Pros and Cons of TON Liquid Staking

Pros:

  • User-agnostic design makes it suitable for all users, regardless of their stake size or technical expertise.
  • Allows partial and full withdrawals at any time, providing liquidity to stakers.

Cons:

  • Higher effort required for deployment and management due to the use of multiple smart contracts and DAOs.
  • Reliance on various smart contracts can increase the risk of vulnerabilities, necessitating rigorous audits and security measures.

The Liquid Staking Contract offers a versatile and powerful staking solution on the TON blockchain, combining the benefits of liquidity, decentralization, and accessibility. By understanding and leveraging this mechanism, users can participate in network validation more flexibly and securely, contributing to the overall stability and growth of the TON ecosystem.

Staking TON with Chorus One

Chorus One offers white-label TON validator services for institutional customers, as well as deployment and management of nominator pools. We can create nominator pools for our customers, requiring a minimum delegation of 300,000 TON tokens (TONcoin).

As the operator, Chorus One takes full responsibility for the operational fees, maintenance, and performance of the validator, ensuring seamless and efficient service.

Ready to get started, or want to learn more?

Fill this form - https://chorusone.my.salesforce-sites.com/WebToLead

OR

Email us - staking@chorus.one

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Networks
TON Series #1: Exploring TON Space, Mini Apps, Native Stablecoin payments, and more.
We explore some of the most unique innovations within the TON (The Open Network) ecosystem, and why they matter
July 4, 2024
5 min read

The rise of TON (The Open Network) has been spectacular, driven by its seamless integration with Telegram and remarkable price performance, reaching new all-time highs in June 2024. Its native token, Toncoin ($TON), has achieved a market cap of $17 billion and a total value locked (TVL) of over 660 million at the time of writing.

This year, the network has gained tremendous traction, becoming the preferred solution for Web3 integration with Telegram, which reportedly has over 900 million users worldwide.

Key developments fueling TON's rapid adoption include the global launch of TON Space, a self-hosted digital wallet (Telegram Wallet), a strategic partnership with Tencent to create a ‘Super App Eco-platform,’ and the launch of native stablecoin payments. Major investors like Pantera Capital have also highlighted TON’s scalability and extensive user base, comparing its potential to that of Solana or Ethereum and claiming TON as one of the most exciting and unique blockchains in existence today.

Source: https://defillama.com/chain/TON (as of Jul 4, 2024)

Below, we explore some of the most unique innovations within the TON ecosystem. 👇

  1. The Telegram Wallet and TON Space: Easy Onboarding, Simplifying service payments and fund transfers
Source: https://wallet.tg/ton

The Telegram Wallet, introduced in the fall of 2023, is a versatile tool for managing digital currencies directly within the Telegram messaging app. It offers both custodial and non-custodial options, giving users the flexibility to choose between having Telegram manage their keys or maintaining full control themselves.

TON Space, a novel feature within the Telegram Wallet, serves as its non-custodial component. It allows users to store, send, receive, and exchange various cryptocurrencies, including Toncoin, Bitcoin, and stablecoins, all within the app. Users can back up their wallets using Telegram and their email, eliminating the need to remember a seed phrase. Additionally, users can track their portfolio in real-time and receive transaction notifications.

Why this matters:

The key advantage of TON Space is its seamless integration with Telegram, providing easy access to funds, quick transactions with contacts, as well as enhanced security and flexibility for experienced users. Its integration with Telegram bots and services allows for efficient market updates, trading actions, and service payments, all in one place.

TON Space simplifies digital asset management, making it accessible to a broader audience while offering advanced features for experienced users. By combining the convenience of a messaging app with the functionality of a comprehensive wallet, TON Space aims to drive mass adoption of cryptocurrency, potentially increasing the user base to 500 million by 2028.

To understand how to choose the right wallet for your TON assets here, visit: https://www.coingecko.com/learn/top-ton-wallets-jettons-crypto

Source: https://x.com/ton_blockchain/status/1702293212017074279
  1. A truly scalable ecosystem with a highly performative blockchain

TON capitalizes on the messaging app's extensive user base to create a network capable of supporting a wide range of applications. Its ecosystem comprises the TON Blockchain, TON Storage, TON DNS, and TON Services, all designed to work seamlessly together.

At the core of TON is its blockchain, built for high performance and scalability. Its dynamic sharding mechanism enables the network to process millions of transactions per second, scaling efficiently as the user base expands.

Dynamic sharding is TON's key feature for achieving high scalability. The ability to shard into individual chains (work chains and shard chains) allows TON to "distribute" transactions, effectively removing the bottleneck of processing transactions on a single blockchain. Learn more about how TON’s dynamic sharding works here.

Why this Matters:

TON’s multifaceted services extend beyond traditional blockchain functionality, aiming to establish a foundational Web3 platform. By integrating various decentralized services within a single ecosystem, TON provides the infrastructure necessary for a decentralized internet, positioning itself as a significant player in the evolution of digital infrastructure. Additionally, TON’s highly scalable blockchain offers an ideal platform for developers looking to deploy applications for a large audience without compromising on speed or security.

TON’s dynamic sharding enables a scalable network for millions of users. Source: https://panteracapital.com/blog-investing-in-ton-network/

  1. Mini Apps - TON’s native support for off-chain scaling

Over 360 million users engage monthly with Telegram's “Mini Apps,” including chatbots and mini-games which are easily accessible via the TON Space. These TON-based applications leverage TON’s innovative support for payment channel technology (or Lightning Network) designed for fast off-chain transactions, efficiently handling microtransactions and high-frequency trading.

Why this Matters:

TON’s native support for off-chain scaling and the lightning network design addresses the scalability trilemma more effectively than bolt-on solutions. It allows the blockchain to handle high-frequency, low-value transactions, which are essential for the mainstream adoption of blockchain technology.

Currently, there are over 300 projects on TON, with most building mini-apps accessible via the Telegram Apps Center. Earlier this year, memecoin trading tools like BonkBot leveraging this technology generated millions of dollars in revenue through Telegram’s interface. TON-based applications such as StormTrade now enable users to trade perpetuals, cryptocurrencies, stocks, and equities using the same platform. With StormTrade facilitating over $10 million in daily trading volume, similar TON-native Telegram bots are poised to become the preferred user experience for many traders.

  1. Native Stablecoin payments

On April 19th, 2024, Tether announced the deployment of a stablecoin, USDt, on the TON blockchain and in Wallet in Telegram. This development represents a significant advancement for the industry, allowing hundreds of millions of users to seamlessly send and receive stablecoins through the Telegram platform, making payments as easy as using Venmo or Apple Cash.

Additionally, as part of the TON network’s scalability plan, straight from Telegram Wallet, users can transfer USDt to i) contacts or other Telegram users; and ii) their own or others’ addresses in the TON blockchain for a very low fee (currently ~0.005 TON), making it a very convenient and competitive platform for small businesses and services.

Why this Matters:

For the TON community, integrating USDt into Wallet in Telegram significantly improves the transaction experience. Users benefit from free transfers within Telegram and only pay network fees when transacting on-chain, using TON space or other self-custodial wallets. USDt on TON also provides an accessible entry point for newcomers to cryptocurrencies, combining the advantages of digital currencies with the stability of traditional fiat currencies.

In fact, the supply of USDT stablecoin on the TON network crossed 500 million after two months of rollout, reflecting a high demand for this use-case.

Stablecoin payments on TON (Source: https://panteracapital.com/blog-investing-in-ton-network/ )

TON Economics: Is TON the new SOL?

Even when transacting on-chain, the TON blockchain is relatively cheap. Employing a gas based model, simple transactions’ fee currently averages 0.005 TON, or $0.04 at the time of writing when $TON was priced at $8. At this level, TON positions itself as a potential competitor to Solana - although TON’s scalability has not yet been tested as extensively.

Inflation rate in the protocol is 0.5% per year - considerably small compared to other blockchains. To compensate for that, all network participants are rewarded from both transaction fees and block rewards. As a consequence, users are incentivized to stake their TONcoin to secure the network and directly benefit from network adoption. The biggest advantage lies in keeping assets staked on-chain rather than with external parties offering a fixed APY, e.g. centralized exchanges. As part of a deflationary mechanism, 50% of all TONcoin collected in fees is burnt.

TON Staking

TON relies on the DPoS consensus mechanism with a set of validators who propose and validate new blocks. The validator set is determined by the Elector governance smart contract, which allocates new rounds based on each validator's weight, represented by the amount of tokens delegated to them.

Staking is one of the safest and most predictable ways to earn rewards in the crypto space, as the value originates from the blockchain’s native currency inflation, making it forecastable.

By staking your TON, you help secure the network and earn rewards. Chorus One is the leading enterprise-grade staking platform, enabling institutional customers to stake TON and integrate TON staking functionality into their offerings. We are ready to closely collaborate and contribute to the success of the TON ecosystem, and provide the best staking experience possible.

How to stake TON?

Reach out to us if you are an institution looking to stake TON with Chorus One.

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Networks
Introducing Symbiotic - The latest restaking protocol in town
Bringing flexible, capital-efficient, multi-asset restaking for all of crypto
June 18, 2024
5 min read

Restaking Summer has arrived.

The staking revolution on Ethereum and other proof-of-stake blockchains has been one of the biggest developments in crypto over the past few years. First came staking pools and services that allowed users to earn rewards by contributing their crypto assets to help secure these networks. Then liquid staking derivatives like stETH unlocked composability and liquidity - holders could put their staked assets to work earning yield in DeFi while still earning staking rewards.

The first half of 2024 has seen the rise of restaking - protocols that allow staked assets like stETH, wETH, osETH and more to be recursively staked to earn compounding rewards. EigenLayer took restaking mainstream, locking nearly $20B in TVL (at the time of writing) as users flocked to maximize their yields. But restaking has been limited to a single asset like ETH so far.

Enter Symbiotic

Now, a new protocol called Symbiotic is aiming to push restaking into its next phase - a permissionless, asset-agnostic restaking layer for all of crypto.

Symbiotic is a generalized shared security protocol that serves as a thin coordination layer. It empowers network builders to source operators and scale economic security for their decentralized network.

At its core, Symbiotic separates the concepts of staking capital ("collateral") and validator infrastructure. This allows networks to tap into pools of staked assets as economic bandwidth, while giving stakeholders full flexibility in delegating to the operators of their choice.

The Symbiotic protocol has a modular design with five core components that work together to provide a flexible and efficient ecosystem for decentralized networks.

  1. Collateral: ERC-20 tokens representing staked assets or liquidity positions from various blockchains, enabling cross-chain capital efficiency.
  2. Vaults: A key component handling delegation and restaking management, responsible for accounting, delegation strategies, and reward distribution. Vaults can be configured in various ways to create differentiated products.
  3. Operators: Entities like Chorus One that run infrastructure for decentralized networks within and outside the Symbiotic ecosystem. The protocol creates an operator registry and enables them to opt-in to networks and receive economic backing from restakers through vaults.
  4. Resolvers: Contracts or entities that handle slashing incidents forwarded from networks, with the ability to veto these incidents. Resolvers can take the form of committees or decentralized dispute resolution frameworks, providing added security to participants.
  5. Networks: Protocols that rely on decentralized infrastructure to deliver services in the crypto economy. Symbiotic's modular design allows developers to define engagement rules for participants in multi-subnetwork protocols.

The 5 core components of Symbiotic (https://docs.symbiotic.fi/)
Understanding how the protocol works

  1. Users can deposit their assets and mint Collateral into trusted Vaults (e.g., a Chorus One-specific vault). These Vaults predefine the eligible collateral, such as ETH, stablecoins, LP positions, etc.

  2. Vaults then manage the delegation of assets to operators or opt-in to run the infrastructure of chosen Networks (in the case of operator-specific Vaults like the Chorus One Vault). For Vaults that are not operator-specific, Symbiotic offers a registry of operators with their credentials to facilitate restakers’ delegation strategies.

  3. While Vaults define acceptable collateral, Networks need to accept this collateral. Additionally, Vaults and Networks must agree on the slashing and reward distribution logic.

What makes Symbiotic unique?

Symbiotic leverages a flexible model with specific characteristics that offer distinct advantages to each stakeholder:

For Operators:

  • Operators can secure stakes from a diverse range of restakers with varying risk tolerances without needing to establish separate infrastructures for each one.

For Restakers:

  • Restakers can delegate assets beyond ETH and select trusted Vaults for their deposits. They also have the option to place their collateral in immutable Vaults, ensuring that the terms cannot be altered in the future.

For Networks:

  • Networks can collaborate with top-tier operators who have verified credentials. When sourcing security, networks can choose operators based on reputation or other important criteria. The flexibility in collateral options leads to a more extensive security pool, potentially reducing security costs for networks.

The protocol opened for deposits on June 11th, and it was met with much fanfare and demand: within a mere 5 hours of going live, a whopping 41,000 staked wETH had already been deposited into the protocol - smashing through the initial cap! New crypto assets and higher caps will be added as the protocol onboards more networks and operators.

Symbiotic vs. EigenLayer

Symbiotic sets itself apart with a permissionless and modular framework, providing enhanced flexibility and control. Key features include:

  1. Multi-asset support: Symbiotic permits direct deposits of any ERC-20 token, enhancing its versatility compared to EigenLayer, which is primarily centered around ETH and its derivatives. Nonetheless, EigenLayer has indicated the potential to support any asset in the future.
  2. Customizable Parameters: Networks utilizing Symbiotic can select their collateral assets, node operators, rewards, and slashing conditions. This modularity grants networks the freedom to tailor their security settings to meet specific needs.
  3. Immutable Core Contracts: Symbiotic’s core contracts are non-upgradeable, which minimizes governance risks and potential points of failure.
  4. Permissionless Design: Symbiotic fosters a more decentralized and open ecosystem by enabling any decentralized application to integrate without needing prior approval.

EigenLayer employs a more managed and centralized strategy, concentrating on utilizing the security provided by ETH stakers to back various decentralized applications (AVSs):

  1. Single Asset Focus: EigenLayer primarily supports ETH and its derivatives. This focus can limit flexibility compared to Symbiotic’s broader multi-asset support.
  2. Centralized Oversight: EigenLayer oversees the delegation of staked ETH to node operators responsible for validating different AVSs.
  3. Dynamic Marketplace: EigenLayer offers a marketplace for decentralized trust, enabling developers to leverage pooled ETH security to launch new protocols and applications, with risks being distributed among pool depositors.

Symbiotic x Mellow Protocol

Symbiotic has collaborated extensively with Mellow Protocol, its "native flagship" liquid restaking solution. This partnership empowers node operators and other curators to create their own composable LRTs, allowing them to manage risks by choosing networks that align with their specific requirements, rather than having these decisions imposed by restaking protocols.

Mellow provides the ability for anyone, including hedge funds and node operators, to deploy a Liquid Restaking Token. This will likely lead to a significant increase in the number of LRTs, complicating their integration with DeFi protocols and affecting liquidity. Despite these challenges, Mellow offers several advantages:

  • Varied Risk Profiles: Traditional LRTs often impose a single risk profile on all users. Mellow enables multiple risk-adjusted models, allowing users to select their desired level of risk exposure.
  • Modular Infrastructure: Mellow's modular design permits networks to request specific assets and configurations, enabling risk curators to create tailored LRTs to meet their needs.
  • Smart Contract Risk: By allowing modular risk management, Mellow reduces the risk of bugs in smart contracts and logic of Shared Security Networks, providing a safer environment for restakers.
  • Operator Centralization: Mellow prevents centralization by distributing the decision-making process for operator selection, ensuring a balanced and decentralized operator ecosystem. Existing LTRs determine which operators should validate their pooled ETH, as well as what AVS they opt in to, effectively managing Risk on behalf of users.
  • LRT Looping Risk: Mellow addresses the risk of liquidity issues caused by withdrawal closures, with current withdrawals taking 24 hours.

Symbiotic restaking is LIVE on our staking dApp, OPUS Pool

We’re proud to share that we have integrated Symbiotic restaking into our staking dApp, OPUS Pool.  

​​OPUS users can now seamlessly tap into Symbiotic's restaking capabilities with just a few clicks on our dApp. When the cap is relifted, simply deposit your assets to start earning Symbiotic points, which can soon be delegated to operators like Chorus One to earn rewards.

Not only is the process incredibly user-friendly, but it's fully secure and censorship-resistant - restaking as it was meant to be.

Start restaking today at: https://opus.chorus.one/pool/restake

Resources:

Symbiotic Website: https://symbiotic.fi/

Docs: https://docs.symbiotic.fi/

Twitter:https://x.com/symbioticfi

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Networks
Understanding Aptos: How its Technical Architecture and Modular Design Transcends Monolithic Chains
Deep dive into Aptos' multi-layer approach that outperforms monolithic chains
May 16, 2024
5 min read

In blockchains, reliability and accessibility are key factors for increased web3 adoption, addressing certain bottlenecks in existing layer-1 protocol implementations. In distributed systems such as blockchain, the process of carrying out a transaction differs from modifying the ledger's state and recording the outcomes.

Aptos is designed in a modular way, which enables quick development and facilitates faster release cycles. Unlike monolithic architectures that require extensive time for editing, auditing, and testing, this modular approach allows changes to be focused on specific modules. This offers a systematic way to expand validators beyond just one machine by granting them access to more computational power, network capabilities, and storage options.

A brief introduction to Aptos

Aptos is a Layer 1 Proof-of-Stake blockchain. It uses Move, a programming language developed from Meta’s Diem and Novi projects. Move is designed for safety and reliability, harnessing the power of Rust, a low-level programming language.

Aptos’ technological stack features many novel models, including the AptosBFTv4 consensus mechanism, the Quorum Store mempool protocol, the Block-STM parallel execution engine, and Move on Aptos. The transaction flow on Aptos is distinctly different from most competing networks, with every step of the process—from broadcasting transactions, ordering block metadata, to consolidating storage—happening concurrently in a modular fashion.

Deep Dive into Aptos Consensus Mechanism - AptosBFT

AptosBFT, originally named DiemBFT, is a consensus algorithm developed by Diem’s core blockchain developers, many of whom now contribute to Aptos through Aptos Labs. AptosBFT implements increased throughput and lower latency compared to existing PBFT through a round-by-round consensus and block chaining. AptosBFT v4 enhances transaction processing speed through linear communication and chaining, improving synchronization speed among validators via a 'Pacemaker' and 'Timeout' mechanism.

The Aptos Labs team also introduced Quorum Store, an implementation of Narwhal. Quorum improves consensus throughput by decoupling data dissemination from network consensus. Before Quorum Store, transaction processing involved two major phases: Mempool and Consensus. An intermediate phase, the Quorum phase, was added between them. The Mempool holds potential user transactions, Quorum Store pulls batches of these transactions, broadcasts them, and forms proofs of their availability. Consensus orders these proofs, and execution uses Quorum Store to map them back to the corresponding transaction batches, thereby solving the problem of transaction redundancy efficiently.

Architectural Design

DPoS - Delegated Staking: This serves as an expansion of the staking protocol. It involves a delegation pool acting as an intermediary between the stake owner and the validator. This pool can gather stakes from delegators and include them in the native stake pool linked to the validator on their behalf. This system enables various entities to meet the criteria for a validator to join the set by pooling stakes. Delegators have the option to contribute to an inactive pool, but rewards are only earned once it becomes active. The minimum stake is 11 APT, with the option to unstake at any time, but funds are not available until the next validator unlock date. Delegators are paid 8% of the service fees.

Move: Aptos blockchain seamlessly incorporates and utilizes the Move programming language for rapid and reliable transaction processing. The Move Prover, a formal validator for smart contracts written in Move, offers security against common errors, providing builders and developers tools to defend projects against attack vectors like double-spending.

Parallel Execution: Aptos handles transaction processing in parallel without requiring an upfront declaration of user-known dependencies, unlike other blockchains such as Solana and Sui. This approach facilitates more intricate transactions, reducing costs and latency for end users.

Transaction Flow: Aptos maximizes throughput and reduces complexity in transaction processing by dividing it into three stages: pipelining, batching, and parallel execution. These stages can be parallelized, enabling novel modes of validator-client interaction and enhancing development timelines by treating each phase as a separate entity. Transactions are organized into batches by each validator, merged into blocks through a consensus mechanism.

Tokenomics

The native token of the Aptos ecosystem (APT token) serves multiple purposes:

  • Transaction Fees: The native token pays for network transactions and rewards validators.
  • Validator Staking: Token holders can stake their APT, contributing to the network's security and stability, and earning additional APT tokens.
  • Governance: Token holders can participate in on-chain governance, voting on protocol upgrades, changes to economic parameters, and other proposals.

As of October 2022, the total token supply of APT is 1 billion tokens, with a circulating supply of 130,000,000.

Aptos Ecosystem

The Aptos ecosystem is growing thanks to continued efforts to improve UX through safety and performance.

Decentralized Finance (DeFi): Several DeFi projects are building DEX Aggregator, DeFi HyperApp, Liquidity engine, and perpetual DEX on Aptos.

Improved User Experience (UX): Platforms are building tools and products to simplify the process of building scalable applications on Aptos.

On-chain Gaming: Platforms are using Aptos SDK to build multi-platform applications by bringing decentralization to Unity developers.

Aptos is also facilitating interoperability by launching bridges like Wormhole on Aptos that allow native Ethereum and Solana users to move into the Aptos ecosystem.

Aptos’ Future

Technical Improvements: Contributors to the Aptos protocol are committed to making the network more scalable, performant, and robust. The team at Aptos Labs developed a solution for deep testing called  Previewnet that replicates what Aptos mainnet will look like in the coming months.

The team also unlocked a new record of >30k TPS  (Transaction per seconds) in the Previewnet. Aptos is striving to expand scalability even more, aiming for >100k TPS as their next goal on the path to surpassing 1 million TPS. This bold target is in line with Aptos' goal of building a platform that can cater to billions of users, paving the way for widespread adoption of Web3 technologies.

Ecosystem Partnerships: Aptos collaborates with industry leaders like Google Cloud, Microsoft, and MoonPay, indicating potential for future growth and adoption.

Further Reading and Resources

Website: https://aptoslabs.com/

Developer Documentation: https://aptos.dev/

Twitter: https://twitter.com/Aptos

Telegram: https://github.com/aptos-labs

Github: https://github.com/aptos-labs

Discord: https://discord.gg/aptosnetwork

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Networks
The Imperative for Bitcoin Layers
An exploration of the intricacies of Bitcoin Layers and key projects building within the ecosystem
April 26, 2024
5 min read

Bitcoin's Layer 1, revered for its unparalleled security and decentralization, has faced scrutiny over its scalability, cost, and throughput limitations. These constraints catalyzed the emergence of alternative networks like Ethereum, designed with smart contracting capabilities at their core. However, the narrative is shifting. With the introduction of Layer 2 solutions that integrate DeFi functionalities to Bitcoin, it’s poised to expand its utility far beyond a store of value.

In this article, we delve into the intricacies of Bitcoin Layers, and explore some of the projects in the space we’re most excited about.

As a team that is continually researching new technologies and exploring promising narratives, we’re thrilled to expand our expertise in the Bitcoin economy and collaborate with key players building in this ecosystem.

The Bitcoin Problem

Before delving into the nuances of Bitcoin Layer 2 solutions, let's take a step back and understand the core concept of Layer 2s. A Layer 2 is built on top of the base chain (Layer 1) to improve scalability and transaction throughput.

Bitcoin and Ethereum are Layer 1 protocols, serving as the settlement layer for all transactions on their respective networks. Layer 2 solutions offer a way to increase transaction speeds and scale the network while benefiting from the security of the main chain.

While numerous Layer 2 solutions, such as rollups, side chains, and channels, are already building on Ethereum, and Bitcoin Layer 2s have been in development for some time, several projects are now closer to launching and expanding Bitcoin's utility. However, scaling Bitcoin presents unique intricacies that need to be addressed.

The most crucial requirement for a Bitcoin Layer 2 solution lies in deriving its security from Bitcoin's own security model, a task that proves challenging in practice. To effectively secure a Layer 2, Bitcoin must possess the computational capability to validate the behavior of the Layer 2. However, Bitcoin's current computational capacity falls short compared to Ethereum's Layer 2 solutions.

For instance, Ethereum rollups derive their security from the Layer 1 by either verifying a zero-knowledge proof (zk-rollup) or confirming a fraud proof (optimistic rollup). Nevertheless, there are ongoing proposals aimed at enhancing Bitcoin's functionality to enable the base layer to validate zk-Proofs submitted by rollups. Additionally, initiatives like BitVM strive to implement fraud proofs without necessitating alterations to the base layer.

While solutions are emerging to address this challenge, they bring their own set of architectural choices and leverage novel technologies to find viable solutions. As the development of Bitcoin Layer 2s progresses, the ecosystem will need to carefully evaluate the trade-offs and implications of each approach.

Architecture Choices for Bitcoin's Layer 2

Bitcoin's Layer 2 solutions face unique challenges in trying to improve upon the base layer. These challenges revolve around three main goals: handling more transactions, maintaining robust security, and ensuring that the system remains decentralized. Here's a simpler look at each goal:

  1. Scalability (Handling More Transactions):
    • Goal: To process more transactions than Bitcoin's main network and support more complex types of transactions.
    • How It's Done: By using a Virtual Machine (VM) and an additional chain or blockspace, which is like a special computer system that can perform complex operations needed for advanced financial tasks.
    • Balancing Act: It’s important that these systems are not too complex, so developers are willing to build on them and people want to use them.
    • Current Solutions: Some solutions introduce new environments like VMs for handling these complex operations, or use off-chain contracts, which means some transactions are processed away from Bitcoin’s main network for efficiency. Stacks introduces clarityVM and microblocks between bitcoin blocks in a separate chain. Mezo has a EVM chain.

  2. Security (Keeping the System Safe):
    • Goal: To ensure that transactions are secure, accessible, resistant to censorship, and protected.
    • How It's Done: By using Bitcoin's existing security features and adapting them to work with new Layer 2 functionalities.
    • Current Solutions: Some are using comprehensive VMs that try to settle transactions directly on the Bitcoin network or use specific contracts similar to the Lightning Network. In contrast to Ethereum, which can handle very complex security mechanisms, Bitcoin requires simpler solutions or entirely new coding instructions (opcodes) because its base layer is less complex. A common attempt to increase security is to decentralize the multisig of parties who settle transactions on Bitcoin. Twilight is a good example of a reinforced multisig. Mezo uses tBTC trustless bridging technology.

  3. Decentralization (Keeping the System Open and Accessible):
    • Goal: To ensure that anyone can participate in verifying transactions and that the system does not rely heavily on central authorities.
    • How It's Done: By making it easier for individuals to access and verify the blockchain's data.
    • Current Solutions: Encouraging the use of an open network where anyone can join, or a federation system where a group of parties manage the system together, which still aims to distribute control rather than centralize it. StackingDAO for example builds onStacks and removes the stacking complexities for users who want to stake STX.

By focusing on these three areas, Bitcoin's Layer 2 aims to enhance the base layer's capabilities while adhering to the principles of scalability, security, and decentralization. This approach ensures that the network can grow and adapt to new demands without compromising on its core values.


Exploring Bitcoin Layers

In this section, we explore a few Bitcoin L2s that we’re excited about, and provide a quick overview of the project.


Stacks

Overview: Stacks brings smart contracts and decentralized apps to Bitcoin using a unique Proof-of-Transfer (PoX) mechanism. Key Features:

  • Mechanism: Uses PoX alongside Bitcoin's Proof-of-Work, enabling Stacks to reuse Bitcoin's computational power.
  • Security: Participants, or "Stackers", lock up STX tokens to support network operations and in return, earn Bitcoin as rewards. Post Nakamoto upgrade, “Stackers” will also validate blocks, hence the emergence of liquid stacking solutions like StackingDAO.
  • Unique Aspect: Novel consensus mechanism and unique VM (Clarity) to maximize alignment with Bitcoin programming structure.

Lightning Network

Overview: Designed for fast and cost-effective micropayments on Bitcoin.

Key Features:

  • Mechanism: Operates using off-chain payment channels for transaction handling, with settlements finalized on Bitcoin’s blockchain.
  • Performance: Enables instant transactions, dramatically reducing the costs and delays typical of Bitcoin’s main network.

Rootstock (RSK)

Overview: Introduces Ethereum-compatible smart contracts to Bitcoin.

Key Features:

  • Mechanism: Combines Bitcoin’s Proof-of-Work through merged mining with a smart contract layer.
  • Compatibility: Allows existing Ethereum applications to transition to the Bitcoin ecosystem seamlessly.

Mezo

Overview: Builds on BTC to EVM bridging technologies, offering a novel dual-token staking model via $HODL.

Key Features:

  • Mechanism: Based on a PoS consensus and supports BTC as a gas asset, facilitating integration between Bitcoin and Ethereum systems.
  • Staking: Allows BTC holders to stake directly, potentially earning higher rewards through a structured reward system.

BitLayer

Overview: The first implementation using BitVM, focusing on scalable and efficient transaction processing.

Key Features:

  • Mechanism: Utilizes optimistic rollups and a combination of virtual machines for executing and verifying transactions.
  • BitVM: Aims to implement fraud proofs to Bitcoin L1 by acting as a translator for Bitcoin scripts.

Babylon

Overview: Merges Proof-of-Stake with Bitcoin’s robustness, focusing on cross-chain functionalities to offer Bitcoin restaking.

Key Features:

  • Mechanism: Leverages Bitcoin for timestamping and enables trustless staking on Bitcoin through its unique protocols. Timestaming is used to secure other PoS chains with Bitcoin, with the idea that block state can be recreated at any point in time.
  • Integration: Aims to provide security to decentralized systems via Bitcoin’s network.
  • Use cases: Fast un-bonding (e.g. reduce Cosmos staking 21 day un-bonding period), restaking or shared security, transaction protection and more.

Ark

Overview: Offers private and scalable off-chain Bitcoin payments.

Key Features:

  • Mechanism: Uses off-chain transaction outputs managed by service providers to facilitate transactions.
  • Privacy: Maintains user anonymity while reducing transaction costs compared to traditional Bitcoin transfers.

Bison

Overview: Implements a zk-rollup model to improve transaction efficiency and security on Bitcoin.

Key Features:

  • Mechanism: Utilizes zk-STARKs and ordinals for enhanced scalability and security, integrating smart contract capabilities.
  • Security: Uses discrete log contracts for bridging, relying on external oracles for state verification.

Botanix

Overview: An Ethereum-based Proof-of-Stake Layer 2 that uses Bitcoin as its core asset for staking and governance.

Key Features:

  • Mechanism: Orchestrator nodes manage a multisig setup, enhancing interoperability and security. Offers a robust distributed network for it’s multisig operation, called the Spiderchain.
  • Currency: Features synthetic BTC as its native currency, pegged 1:1 with Bitcoin, aligning closely with Bitcoin’s value.

Chainway

Overview: A zk-rollup solution that stores proofs and transaction data directly on Bitcoin's blockchain.

Key Features:

  • Mechanism: Utilizes recursive proofs to build a chain of trust, ensuring security and verifiability.
  • Inclusion: Allows users to force transaction inclusion via L1, promoting transparency and reducing potential for censorship.

BOB (Build-on-Bitcoin)

Overview: BOB is an Ethereum-based Layer 2 solution designed to integrate closely with Bitcoin, maintaining alignment with Bitcoin's principles.

Key Features:

  • Mechanism: Utilizes an Optimistic rollup approach on Ethereum, using Ethereum's Virtual Machine (EVM) for executing smart contracts. This positions it somewhat like a sidechain since its security is underpinned by Ethereum's Layer 1.
  • Interoperability: Supports different forms of Bitcoin on Ethereum, like Wrapped Bitcoin (WBTC) and TBTC, ensuring easy transition and integration within the Ethereum ecosystem.
  • Future Plans: Aims to implement a more robust and secure two-way bridge utilizing BitVM, enhancing connectivity between Bitcoin and Ethereum networks and improving overall security and functionality.

Twilight

Overview: Twilight offers a platform for deploying privacy-focused decentralized exchanges and other applications, using advanced cryptographic methods to ensure security and privacy.

Key Features:

  • Mechanism: Employs the Boomerang trustless bridge, which uses a series of multisignature wallets with decremental time locks, releasing only a fraction of funds with each Bitcoin block, thus securing large amounts with a relatively smaller stake.
  • Security: Boomerang also uses Bitcoin for data availability, posting refund transactions at every Bitcoin block to ensure users can always retrieve their funds, even if the Layer 2 network goes offline.
  • Versatility: Twilight is designed to be virtual machine and stack agnostic, meaning it can work with various underlying technologies like the Cosmos SDK or the Polygon SDK, making it a flexible foundation for launching Layer 2 solutions with a focus on privacy.

…and more! Stay tuned for Part 2, where we'll delve into even more exciting projects emerging within the ecosystem.


Final Word

As a forward-thinking infrastructure provider, Chorus One is thrilled about the immense potential of integrating DeFi functionalities into Bitcoin and witnessing its evolution beyond being a store of value. Engaging in in-depth research into promising new technologies and projects, we're excited to explore a new landscape beyond Proof of Stake-based networks.

We're actively collaborating with L2s to delve deeper into the ecosystem. If you're interested in learning more or getting involved with some of the projects we're working with, please reach out to us at staking@chorus.one. We'd be delighted to connect with you.

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Networks
A comprehensive overview of Lava Network
How Lava Network is Unleashing Scalable Web3 Data Access
April 25, 2024
5 min read

In blockchains that utilize Proof of Stake, staking allows users to receive rewards by locking tokens to aid in validating transactions and securing the network. Staking services lower barriers to entry by handling technical complexity. Users can stake any tokens without the need to run validators.

At Chorus One, we are happy to announce that we will provide Staking-as-a-Service (SaaS) solution to users at the Lava mainnet launch. Lava network is a protocol that serves as a gateway for applications to access trustworthy, secure, and swift RPC services. Unlike conventional methods that hinge on centralized or public RPC endpoints, Lava Network leverages a decentralized array of premier service providers.

At the cutting edge of blockchain accessibility, Lava provides a user-friendly and scalable solution to tackle the crucial requirement for an Access layer in the blockchain infrastructure. The network makes it very easy for blockchains and rollups to bootstrap a set of infrastructure providers, so users and developers can onboard smoothly.

What is Lava Network

Lava is an application-specific marketplace for decentralized blockchain Remote Procedure Calls (RPC) and APIs based on CosmosSDK. Lava is designed to enhance access scalability to various blockchains. This network has the ability to accommodate any RPC and API in a flexible manner,. Lava boasts of a lightning-fast network that is hyper-scalable, and permissionless with nearly 100% uptime.

A Remote Procedure Call, or RPC, is a lightweight software communication protocol, that allows for developers to run code that can be executed on servers remotely.  

On Lava, blockchain and rollup developers can quickly bootstrap a network of infrastructure providers, without waiting for major providers to add support. The protocol's initial focus is directed towards RPC infrastructure, a service that aids developers to access over 30 diverse chains, from EVM to Cosmos.

Source - Lava Network

Architecture of Lava Network - How Does Lava Network Work

In this section, we break down the different architectural elements of the Lava Network:

Specs - Specs, otherwise called Specifications, are the foundational blueprints for Lava's multichain support, outlined in JSON format. These specifications delineate the minimum requirements necessary for an API to function on Lava effectively. Through these specs, Lava identifies the supported chains and methods while also setting up the associated costs, prerequisites, and validations. Each time the ecosystem requires a fresh API, a new specification is seamlessly integrated. This flexible method seamlessly weaves modularity into the protocol, guaranteeing that Lava stays up-to-date and flexible.

Peer-to-Peer Lava SDK - The Lava SDK is a decentralized, peer-to-peer blockchain RPC for developers who are exploring the cross-chain functionality the ecosystem is offering. It offers a simplified setup for multi-chain RPC, where adding a new chain can be done with a few lines of code. The Lava-SDK is a JavaScript/TypeScript library that was built to provide decentralized access to all chains supported by the Lava ecosystem. It further provides necessary tools for server and online environments, simplifying the process of building decentralized applications and interacting with multiple blockchains.

Gateway - Lava Gateway is a user-friendly web platform for developers that provides instant access to blockchain data. The Gateway makes use of the Lava Server Kit to offer a hosted entry point for developers seeking RPC via the Lava Network. This setup enables users to handle and set up Web3 APIs using user-friendly controls right from their browser. While the Lava Server Kit and SDK offer enhanced control and permissionless features, the Lava Gateway grants similar entry to our base network along with extra conveniences like project management utilities and user accounts.

High-level architecture of Lava Network. Source: Lava Network Blog
The LAVA token

The Lava mainnet is scheduled to launch soon while the team focuses on delivering an easy, fast multi-chain experience. The team published their Tokenomics today, which is available here.

Token details for LAVA stakers:

• LAVA is used to reward infrastructure providers on Lava

• Providers can earn native tokens from chains/rollups supported by the network

• LAVA can be restaked to earn additional yield and lower security fees

• LAVA has a capped supply with deflationary mechanisms

Summing up Lava Network

Lava Network is a modular network that focuses on giving blockchains and rollups a performant and reliable access layer. RPC is the first supported use-case, but other services related to data access will be added soon e.g. indexing.

To read more about Lava Network, we recommend the official documentation available in docs.lavanet.xyz.

Staking LAVA with Chorus One

We currently support infrastructure for over 50 networks, and we're thrilled to announce that Chorus One will be providing staking services to users as the Lava team heads towards the mainnet.

Chorus One Ventures is an early investor in LAVA, and has been supporting the project since its inception. Chorus One’s impeccable reputation, along with its thorough risk management protocols and collaborations with insurance providers, highlights the priority placed on safeguarding, ensuring the security of your LAVA staking activities remains untarnished.

For any other questions or to stake LAVA with Chorus One, reach out to staking@chorus.one

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

Networks
Beyond Proof of Stake: How Berachain's Proof of Liquidity reimagines capital efficiency 🐻⛓
A comprehensive overview of Berachain, how it works, and use cases. ‍
April 5, 2024
5 min read

Chorus One is proud to be a validator on Berachain, a high-performance modular EVM compatible blockchain powered by Proof-of-Liquidity. In this article, we provide an overview of everything you need to know about Berachain, how it works and use cases. ‍

Berachain, currently in Testnet phase, is changing how DeFi users access liquidity, supercharging applications, and providing flexibility and adaptability to the thriving digital economy. It combines the capabilities of the Cosmos SDK and introduces its novel 'Proof of Liquidity' as well as their new modular implementation of the EVM called Polaris. This not only tackles current obstacles but also paves the way for fresh avenues of creativity and advancement within the DeFi industry.

A brief introduction to Berachain

Berachain is a DeFi-focused Layer 1 blockchain running on Proof of Liquidity consensus built on the Cosmos SDK. Berachain emphasizes modularity in its design approach. By incorporating Polaris, Berachain not only ensures EVM compatibility but also supports a modular framework that allows for easy separation of the EVM runtime layer and crafting stateful precompiles and unique modules enabling the creation of smarter and more effective contracts.

Berachain operates a tri-token system: BERA (native token of Berachain i.e gas), HONEY (stablecoin) and BGT (governance token). Berachain Blockchain also provides a user-friendly interface and a comprehensive array of tools for developers and builders to create and deploy their applications.

What is Proof of Liquidity(PoL)?

Proof of Liquidity is a concept introduced by the Berachain team that enables users to stake various tokens and delegate this stake to validators. Users can stake assets like BTC, ETH, L1 tokens wBTC, wAVAX, wETH, wADA, and stablecoins.

Proof of liquidity models seeks to address challenges in common decentralized systems like liquidity fragmentation and stake centralization. Though Proof of Liquidity builds on the concept of proof of stake, the token used for staking is no longer the same token used for many on-chain actions. Moreover, the sole way to acquire new governance tokens (BGT) is through providing  liquidity into DeFi applications.

Image source: Berachain Documentation

The concept behind PoL implies that users stake different tokens to enhance the chain's liquidity and bolster the Layer 1  security at the same time. This setup enables users to earn fees by contributing liquidity through staking while also receiving block rewards. Moreover, users have the option to mint HONEY by providing assets as collateral and utilize them within the Berachain ecosystem without constraints.

Berachain’s Modular EVM - Polaris

Berachain's EVM compatibility is derived from the Berachain Polaris EVM library, which enhances the EVM experience compared to the traditional Ethereum setup. Polaris Ethereum not only provides the standard Ethereum features but also empowers developers with the ability to design stateful precompiles and custom modules for crafting smarter and more robust contracts.

Polaris can be easily integrated into any consensus engine or application, including Cosmos-SDK. This modular approach streamlines the EVM integration process and reduces the time and overhead cost for developers to implement their own EVM features.

The Use Case of Berachain

For DeFi Users - Berachain BEX

BEX is Berachain’s decentralized exchange that allows users to add liquidity to an asset pool and receive trading fees and incentives.

BEX introduces the concept of House pools, which serve as the backbone of the exchange. These default pools hold significant importance as they generate BGT rewards, which could be staked later with validators to participate in governance.

BEX also introduces Metapools, a liquidity pool where LP tokens can then be used as part of an asset pair in another pool, helping to increase capital efficiency across the chain.

For Lenders - Bends

Berachain Bends allow users earn interest and rewards by supplying assets like (ETH, BTC, and USDC) and borrowing HONEY. On Bend users can deposit collaterals to contribute to the platform liquidity, earn BGT rewards by utilising and borrowing HONEY within the ecosystem.

Berps

Berps by Berachain (Perpetual Futures Contract Trading) provides users with endless trading opportunities with a wide array of asset access EVM and Cosmos.  It is liquidity efficient, robust and easy to use.

Chorus One’s role in the Berachain ecosystem

Chorus One will be providing staking services and contributing extensive knowledge in infrastructure development to the network. Our role as validators in the Berachain community symbolizes a collaborative effort aimed at delving into new horizons and enhancing the potential within this ecosystem.

Users providing liquidity in the BEX liquidity pools will gradually accumulate BGT, and can be used to create and vote on governance proposals such as proposals that decide on which LP pools receive BGT emissions.  BGT can also be burned 1:1 for BERA. This is a one-way function, BERA cannot be converted into BGT.

Reach out to staking@chorus.one to get started or to learn more.

To read more about Berachain, we recommend the official documentation available in docs.berachain.com.

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

‍‍

Networks
Aleo: Presenting the Privacy-Centric Future of Blockchain
An introduction to Aleo, a layer 1 blockchain leveraging ZK-proofs to ensure privacy to users
March 14, 2024
5 min read

Imagine a world where online interactions don't come at the cost of your privacy. Where you can participate, transact, and share data on your own terms, shrouded in a cloak of cryptography. This is the future envisioned by Aleo, a revolutionary blockchain project that throws open the doors to a privacy-centric internet. Let's delve into Aleo, exploring its technology, participants, and the diverse ecosystem it cultivates.

Decoding what Aleo actually is?

At its core, Aleo is a layer-1 blockchain that leverages zero-knowledge proofs (ZKPs) to unlock unprecedented possibilities for private applications. ZKPs allow users to prove the legitimacy of information without revealing the underlying data itself. This translates to applications where users can participate, interact, and share data confidently, with their privacy remaining more sacred.

Key Terminologies

Credit: A credit is the native asset of the network. It is used to pay for deployment and execution fees of zero-knowledge programs. Credits can also be staked on the network as a form of governance to protect the integrity and security of the protocol.

Microcredit: A microcredit is a subdivision of the native asset (credit). One credit can be further divided into smaller units, and a microcredit is one millionth of a credit.

Prover: A prover is a node on the network that computes zero-knowledge proofs. These proofs, which can be of two types (solutions and transactions), are crucial for validating and securing transactions and activities on the network.

Solutions: In the context of zero-knowledge proofs, a solution attests to the execution of a randomly-sampled Aleo program. When a prover successfully proves the execution, a reward is distributed to both the prover and the stakers on the network.

Transactions: Transactions attest to the execution of user-deployed Aleo programs. When a prover provides a valid transaction proof, a transaction fee is rewarded and distributed to the network.

Stakers: These individuals contribute to the network's security by locking up their Aleo credits (ALEO), earning rewards in return.

Validators: Similar to traditional blockchains, validators verify transactions and secure the network, ensuring its integrity and preventing fraud.

The Technology Behind:

The robust architecture of Aleo rests on three key pillars:

  • Leo (Programming Language): A user-friendly Rust-based DSL designed to simplify ZKP development, removing the barrier for programmers less familiar with complex cryptography.
  • snarkOS (Network Layer): A permissionless and scalable network specifically built for ZK-powered smart contracts, enabling secure and private on-chain execution.
  • snarkVM (Virtual Machine): A powerful virtual machine optimized for ZKPs, delivering efficient proof generation and unlimited runtime, catering to even the most intricate applications.

Dive deep into Aleo’s consensus mechanism - AleoBFT

AleoBFT is a DAG-based BFT protocol inspired by Narwhal and Bullshark. Validators propose batches of transmissions, await 2ƒ + 1 signatures, certify the batch, and advance rounds synchronously for an honest majority. In odd rounds, validators elect a leader for the previous even round, ensuring availability thresholds are met. This process ensures all validators advance together, assuming honesty.

Here’s how the Quorum for Block Production in Even Rounds is achieved:

  1. Leader Election with ƒ + 1 Proposals from Next (Odd) Round:
  • Leader has a batch certificate in the even round with at least 2ƒ + 1 batch certificates from the prior (odd) round.
  • Leader has a batch certificate for the even round included by at least ƒ + 1 batch certificates for the next (odd) round.
  1. Quorum 2ƒ + 1 Achieved without Leader in Even Round:
  • If waiting for the leader times out, and the even round has more than 2ƒ + 1 batch certificates without the leader, validators can proceed without the leader.

The Fueling Force - Aleo Credits (ALEO):

The native token of the Aleo ecosystem, Aleo credits (ALEO), serve multiple purposes:

  • Staking: As mentioned earlier, users can stake Aleo credits to contribute to network security and earn rewards.
  • Fees: Certain network operations incur fees paid in Aleo credits, incentivizing proper resource utilization and network sustainability.
  • Governance: In the future, Aleo credits are envisioned to play a crucial role in community governance, allowing holders to participate in shaping the network's evolution.

How Aleo Credits are distributed:

Design of AleoBFT

AleoBFT operates over a simple set of data structures - a committee, batch proposal, and block. Let’s understand these one-by-one:

Committee:

  • Committee Formation and Membership: Validators, staking a minimum of 1,000,000 credits, govern a round collectively, deciding the BFT protocol until the next committee. It encompasses the starting round, total stake, and committee members with their stake and openness to delegators.
  • Bonding and Unbonding: Validators and delegators can bond and unbond each round, enabling new members to join or existing ones to leave. New validators require 1,000,000 credits, and existing validators must maintain this amount.
  • Leader Election: A cryptographic hash function selects the leader for each even round, considering the round number, number of validators, and their stake.

Batch Proposal: In each round, every committee member suggests a batch to certify, using batch proposals to communicate and maintain agreement on the DAG's status. Each batch proposal contains a Batch ID, Batch Header and a Batch Certificate.

Block: A block is created when the commit rule is activated in AleoBFT. It includes a block header, a sequence of batch certificates, ratifications, solutions, transactions, and a list of aborted transmission IDs.

Aleo’s Flourishing Ecosystem:

The true mark of a successful blockchain lies in its ability to foster a vibrant community and diverse applications. Aleo boasts a rapidly growing ecosystem with projects already exploring its potential across various domains:

  • Decentralized Finance (DeFi): Several DeFi projects are building privacy-preserving lending, borrowing, and trading protocols on Aleo.
  • Data Sharing and Management: Platforms are emerging to enable secure and controlled data sharing between individuals and organizations.
  • Supply Chain Management: Aleo's technology holds promise for tracking goods and materials through complex supply chains while safeguarding sensitive information.
  • Healthcare and Personal Data: Projects are exploring the use of Aleo for storing and managing highly sensitive medical and personal data securely.

Talking about recent updates - Aleo is now considered as one of the top 5 fastest-growing ecosystems for overall developers. Also, Aleo has completed the security audits of snarkOS & snarkVM, which was performed by Trail of Bits.

Aleo worked hard to make the technical details of the project easier to understand. They've simplified and explained the main basics in a straightforward way. For example:

Aleo’s Future:
  • Sustainability: Aleo is committed to eco-friendliness, utilizing a unique consensus mechanism called Proof-of-Stake with zkSNARKs (PoS zk) that consumes significantly less energy than traditional proof-of-work blockchains.
  • Strong Partnerships: The project boasts collaborations with industry leaders like Chainlink and Parity Technologies, indicating its potential for future growth and adoption.
  • Development Roadmap: While still under development, with its mainnet launch anticipated in the near future, the development roadmap showcases continuous improvements and exciting features on the horizon.

As a validator and staking infrastructure provider, Chorus One is deeply impressed by Aleo's groundbreaking approach to privacy in the blockchain space. The potential to unlock entirely new use cases and empower individuals with greater control over their data resonates deeply with our mission to build a more inclusive and accessible crypto ecosystem.

We're particularly excited about the unique technology stack, including snarkOS and snarkVM, which pave the way for scalable and efficient privacy-preserving applications. We believe Aleo has the potential to significantly impact various industries, from DeFi and healthcare to supply chain management, and Chorus One is proud to be a part of this journey. We are looking forward to actively contributing to the network's security and growth through staking infrastructure and look forward to witnessing Aleo's continued development and the exciting applications it enables.

Resources

Website: https://aleo.org/

Twitter: https://twitter.com/AleoHQ

Youtube: https://www.youtube.com/@AleoLabs/featured

Github: https://github.com/AleoHQ

Discord: https://discord.gg/aleo

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

No results found.

Please try different keywords.

 Join our mailing list to receive our latest updates, research reports, and industry news.

Thanks for subscribing. Watch out for us in your inbox.
Oops! Something went wrong while submitting the form.

Want to be a guest?
Drop us a line!

Submit
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.