Stay vigilant against phishing attacks. Chorus One sends emails exclusively to contacts who have subscribed. If you are in doubt, please don’t hesitate to reach out through our official communication channels.

Blog

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
News
Announcing Chorus One's Integration with Paladin: Reshaping MEV on Solana
Chorus One is launching a rollout of Paladin on one of our Solana validators, bringing better MEV rewards to our delegators.
September 10, 2024
Time to Read: 7 minutes
5 min read
Introduction: The MEV landscape on Solana

Maximum Extractable Value (MEV) is critical to blockchains, particularly on networks like Ethereum and Solana. With sub-second block times and high throughput, Solana has unique challenges and opportunities in the MEV space. Unlike Ethereum's block-building marketplace model, Solana's mempool-less architecture has led to a different MEV extraction dynamic characterized by high-speed competition and potential network congestion.

Solana's unique features, including Gulf Stream for mempool-less transaction forwarding, have enabled remarkable speed and efficiency. However, these same features have also created an MEV landscape that requires innovative approaches.

Current trends in Solana's MEV approach

The current methods of MEV extraction on Solana have several drawbacks. Searchers competing on latency often flood the network with duplicate transactions to ensure MEV capture, leading to periods of intense congestion and failing transaction processing for all users.

The winner-takes-all nature of Solana MEV opportunities results in a high rate of failed transactions. These failed transactions still consume compute resources and network bandwidths. Studies have shown that up to 75% of transactions interacting with DEX aggregators can fail during periods of high activity.

Moreover, the concentration of MEV capture among a few players threatens network decentralization as these entities accumulate more resources and influence. In Ethereum, the use of external searchers and block-builders has led to private order flow deals, resulting in extreme centralization where a single builder creating over 50% of Ethereum blocks, with only two builders responsible for 95% and four entities building 99% of all blocks.

Paladin: A new approach to tackling bad MEV on Solana

Paladin introduces a solution to address these issues. It consists of two main components:

  1. An open-source MEV bot, and
  2. A token to capture and distribute MEV rewards among validators and stakers.

The Paladin Bot

The Paladin bot is a high-speed, open-source arb bot that runs locally on validators. It works only when the validator is the leader and is integrated with the Jito-client. By running directly on the validator, it captures all riskless and straightforward MEV opportunities (e.g., atomic arbitrage, CeFi/DeFi arbitrage) faster than searchers, without needing to outsource these opportunities and pay around 20% of the MEV to external entities. Any non-supported, or more advanced MEV strategies that the Paladin bot doesn’t recognize can still be captured by the Jito auction, making it a net positive for the ecosystem.

The bot listens to state updates from the geyser interface, allowing real-time opportunity detection. Validators can choose which tokens and protocols to interact with, allowing more conservative validators to alleviate legal concerns about interacting directly with tokens they deem securities.

The PAL Token

The PAL token is designed to align the incentives of validators and users and create a robust MEV extraction mechanism. With the entire supply of one billion airdropped at launch, PAL is distributed among validators, their stakers, Solana builders, the team, and a development fund.

Source: Paladin

PAL can be staked by validators and their delegators, with rewards proportional to their SOL stake. The token has a unique MEV distribution mechanism, where 10% of captured MEV is funneled to PAL token holders, with 97.5% going back to validators and their stakers. Most staked PALs can vote to slash the staked PAL of validators who engage in dishonest actions, such as running closed-source modifications of Paladin, instead of adhering to the "just run Paladin" principle.

How Paladin Works: A Technical Deep Dive

Paladin's Key Principles and Dynamics

Paladin's design creates dynamics that contribute to its sustainability. The "Pack of Wolves" dynamic incentivizes validators to "run with the pack" by honestly running Paladin. Going against the pack risks slashing and loss of rewards. This creates a self-reinforcing system of honest behavior.

As more validators run Paladin, a flywheel effect is created. More MEV is funneled to PAL holders, increasing the value of PAL and further incentivizing participation. This alignment of long-term interests incentivizes validators to behave honestly rather than pursue short-term gains through harmful practices like frontrunning.

Moreover, by allowing all validators to participate in MEV extraction, Paladin prevents centralization while still allowing searchers to implement more specialized strategies. The bot's open-source nature and transparent reward distribution create a fairer MEV landscape, benefiting the entire Solana ecosystem.

Chorus One's Integration with Paladin

At Chorus One, we recognize Paladin's transformative potential. We've taken the proactive step of integrating  Paladin into one of our Solana validators, Chorus One Palidator.

Breaking Bots - our proof-of-concept to capture MEV on Solana

If you have been following Chorus One, you would know we have a deep interest in MEV. Almost two years back, we open-sourced our proof-of-concept called ‘Breaking Bots’ to capture MEV on Solana efficiently and ethically. Paladin’s proposition is similar in spirit but takes a different approach with the PAL token, which was not part of our proof-of-concept.

Conclusion: Shaping a Better Future for Solana

The integration of Paladin with our validator is a significant step in addressing the challenges of MEV on Solana. We invite Solana stakers to join us in this effort by delegating to our Palidator. Let’s move towards a model that benefits all participants rather than a select few.

As the MEV landscape evolves, Chorus One is committed to exploring and implementing solutions that benefit our delegators and the wider Solana community.

Additional resources on Solana by Chorus One:

Blog articles

https://chorus.one/articles/metrics-that-matter

https://chorus.one/articles/solana-mev-client-an-alternative-way-to-capture-mev-on-solana

https://chorus.one/articles/solana-validator-economics

https://chorus.one/articles/analyzing-mev-instances-on-solana-part-3

https://chorus.one/articles/analyzing-mev-instances-on-solana-part-2

https://chorus.one/articles/analyzing-mev-instances-on-solana-part-1

Podcasts

Solana's Next Big Moves: From Memecoins to Staking—What's Coming Next?

Exploring Marinade V2 and the state of Solana Staking

About Chorus One

Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.

News
Hex Trust x Chorus One: Institutional-grade staking
Hex Trust partners with Chorus One to enhance their robust custody offerings and providing more clients with access to advanced staking solutions.
August 27, 2024
Time to Read: 7 min
5 min read

We're thrilled to partner with Hex Trust, a leading licensed digital asset custodian. This collaboration combines Chorus One's institutional-grade staking infrastructure with Hex Trust's robust custody services, enhancing Hex Trust's offerings and providing more clients with advanced staking solutions.

"Chorus One is excited to collaborate with Hex Trust to expand staking services. This partnership aligns perfectly with our commitment to making staking accessible, secure, and fully compliant for institutional clients." — Brian Crain, CEO of Chorus One

Why Did Hex Trust Choose Chorus One?

Chorus One has maintained a proven track record as a leader in institutional-grade staking. With the largest network support in the industry and an ISO 27001:2022 certification, we are well-positioned to support Hex Trust in delivering high-quality staking services to its clients. This partnership combines an APAC-based licensed custodian with a leading staking provider to deliver compliant and secure staking options across the region.

Benefits of Staking for Institutions

Staking in Proof-of-Stake (PoS) blockchains presents a compelling opportunity for institutions like Hex Trust. It provides a secure and predictable way to generate rewards, leveraging the native token inflation and transaction fees of the blockchain. This results in a consistent revenue stream that is less volatile than traditional crypto trading.

Moreover, by participating in staking, institutions not only earn rewards but also contribute to the overall security and governance of the network. This active involvement helps strengthen the network's reliability and promotes the long-term growth of the Web3 ecosystem, aligning with the broader goals of financial innovation and digital asset adoption.

About Hex Trust

Established in 2018, Hex Trust is a fully licensed digital asset custodian dedicated to providing comprehensive services for protocols, foundations, financial institutions, and the Web3 ecosystem. Hex Trust offers a suite of services including custody, DeFi, brokerage, and more, all built on a regulated infrastructure. For more information, visit hextrust.com or follow Hex Trust on LinkedIn, X (formerly Twitter), and Telegram.

Hex Trust Disclaimer: Products or services mentioned in this material are subject to legal and regulatory requirements in applicable jurisdictions and may not be available in all jurisdictions.

About Chorus One

Chorus One is one of the largest institutional staking providers globally, operating infrastructure for over 60 Proof-of-Stake (PoS) networks, including Ethereum, Cosmos, Solana, Avalanche, Near, and others. Since 2018, we have been at the forefront of the PoS industry, offering easy-to-use, enterprise-grade staking solutions, conducting industry-leading research, and investing in innovative protocols through Chorus One Ventures. As an ISO 27001 certified provider, Chorus One also offers slashing and double-signing insurance to its institutional clients. For more information, visit chorus.one or follow us on LinkedIn, X (formerly Twitter), and Telegram.

This partnership marks a significant step in our shared mission to make staking more accessible and secure for institutional clients. We look forward to the continued growth and success of this collaboration.

Networks
Metrics that Matter: Evaluating Chorus One’s winning Solana performance
Evaluating Solana Validator performance metrics and Chorus One's performance in July 2024
August 21, 2024
Time to Read: 7 minutes
5 min read
Key Takeaways
  • Chorus One processes 11.4% more transactions per second than the average Solana validator, enhancing network throughput.
  • With a skip rate of 2.03%, Chorus One outperforms both the network average (5.19%) and the superminority (5.68%).
  • Chorus One's blocks contain 7.8% more transactions on average compared to other validators
  • Chorus One achieves top performance through advanced hardware, zero-downtime deployments, strategic data center locations, and continuous monitoring.
  • If all validators performed like Chorus One, Solana’s overall transaction capacity could increase by 11.4%.

--

There are many aspects to validator performance on Solana, and different metrics are important to different people. For users of the Solana network, throughput (transactions per second) and latency (how quickly a transaction lands) are key metrics. In this article we’ll dive into two factors that affect those: skip rate and block size. We’ll explain how Chorus One is able to outperform both network average and the superminority on these metrics. If all validators performed as well as Chorus One on these metrics, Solana would be able to process 11.4% more transactions per second.

Throughput

As a Solana user, when you submit a transaction, you want it to be included in the chain as quickly as possible, as cheaply as possible. When the chain can process only a limited amount of transactions per second, that means that only users who are willing to pay high priority fees can get their transaction included. When the chain can process more transactions per second, transaction processing capacity becomes less scarce, and transaction fees go down. Solana’s throughput is determined by the validators that make up the network, so for good network performance, it is important to delegate to a validator that performs well.

Time period and comparison

For this article we look at the month of July 2024. All metrics are reported over the period from midnight July 1st until midnight August 1st in the UTC time zone. (Slot 274965076 until 280826904, for those who want to reproduce our findings.)

In this article we contrast Chorus One against two groups of validators: the entire network (including Chorus One), and the superminority. The superminority is the smallest set of validators that together control more than one third of the stake. We use the superminority from epoch 650, the final epoch in July. It consists of the top 19 validators by stake.

Skip rate

In the Solana network, validators periodically have a duty to produce blocks. Before the start of the epoch, the protocol sets the leader schedule, which determines when every validator has to produce a block. Validators with more stake get assigned more blocks to produce.

If all goes well, when a validator’s turn comes to be the leader, the validator produces a block. The chain grows by one block, and users’ transactions get included. When things don’t go well, the leader fails to produce a block, or the block may not be accepted by the other validators. When the leader fails to extend the chain, this is called a skip, and the fraction of blocks skipped out of blocks assigned in some period of time is called the skip rate. Skips are bad for users of the network, because during a skip, no transactions get processed. Skips lower the throughput of the chain, and delay when transactions get processed. A lower skip rate is therefore better.

A validator can skip for multiple reasons. Of course a validator that is offline will be unable to produce a block, but even when it is online and produces a block, that can still result in a skip. For example, the validator could have been slightly late, and the network has already moved on, assuming the validator skipped its duty. Many of the factors that affect skip rate are directly or indirectly under the validator’s control, but some amount of skipping is inevitable in a decentralized network. During times of high activity, skip rate is generally higher network-wide than during quiet periods. Therefore, the skip rate is not meaningful in isolation, but comparing skip rate between validators is one way to judge their performance.

Over July 2024, Chorus One achieved a skip rate of 2.03%, while the network-wide skip rate was 5.19%. This means that average Solana validators fail to produce their blocks more than 2.5 times as often as Chorus One.

Maybe network average is not a fair comparison though? It may be the case that a few bad validators are pulling up the average. So let’s look at the superminority, the top validators by stake. This relatively small set of validators has the responsibility to produce one third of the blocks, so its influence on the chain’s throughput is large. Over July 2024, the superminority together achieved a skip rate of 5.68%, which is even worse than network average. Superminority validators fail to produce their blocks almost 3× as often as Chorus One.

The Solana network is effectively leaving 3.3% of its blocks on the table by keeping stake delegated to validators with high skip rates.

Block size

Aside from skip rate, a major factor for throughput is the number of transactions that every block contains. When blocks can fit more transactions, the throughput of the chain goes up. When validators are able to build larger blocks, fewer user transactions have to be postponed to the next block, so latency goes down. Furthermore, more capacity means lower transaction costs.

Over July 2024, blocks produced by Chorus One contained on average 1696.2 transactions. (This includes vote transactions that contribute to Solana’s consensus mechanism.) The network-wide average over this period was a mere 1573.3 per block. This means that Chorus One includes 7.8% more transactions per block than average validators.

Again, let’s compare this to the validators with the greatest responsibility and disproportionate impact on chain-wide throughput: the superminority. Here we see that with 1640.6 transactions per block, the superminority does outperform the network average, but nonetheless Chorus One outperforms the superminority by 3.4%.

This means that the Solana network is effectively leaving a 7.8% throughput boost on the table, by keeping stake delegated to low-performing validators. This number is only for produced blocks, we don’t count skips as zero transactions per block. This means that the 7.8% boost would come on top of the 3.3% skip rate boost. Combined, this means that Chorus One achieves 11.4% more transactions per second than average validators.

How Chorus One achieves top performance

Why is Chorus One able to process 11.4% more transactions per second than other validators? As is often the case with performance optimization, there is no single trick, but if you stack enough small optimizations, the combined result can be substantial. A few of the techniques we use:

  • We use the best hardware available on the market. Solana is very sensitive to single-core CPU performance, and with the current rate of innovation in the hardware world, a CPU that was top of the line 18 months ago no longer cuts it to be a top-tier validator today. Chorus One is always using the latest generation CPUs to ensure maximum performance.
  • We deploy with zero downtime. Occasionally we need to restart a validator client (for example to update after a new version is released) or an entire machine (for example, to apply security updates). This process can take many minutes, during which the validator cannot vote or produce blocks. This amount of downtime is unacceptable to us, so we run multiple Solana instances, on different machines. When we need to restart one instance, a different instance takes over validator duties, ensuring that we don’t skip a single block. This redundancy also enables us to maintain uptime in the case of hardware or network failures, which is something that node operators who save costs by running only a single node are unable to do.
  • We use the best locations. We work with multiple hardware providers and data centers, who offer ample bandwidth, to find the location where Solana performs best. While doing so, we have to keep decentralization of the network in mind. Being close to peers is good for performance, but we don’t want to run from a data center where too many other validators are already located; the network has to remain resilient against disasters in that location. Our secondary instance (for failover) is always located in a different country than our primary one. Operating multiple nodes in multiple locations enables us to measure which locations perform best, and enables us to respond quickly to changes in network conditions.
  • We continuously monitor our nodes, and our 24/7 oncall rotation can respond in minutes when something is amiss. As a professional node operator, we have a team of platforms engineers who are working tirelessly to keep our nodes running smoothly.

Final Word

In this article we highlighted two key Solana performance metrics that matter for users of the network: skip rate and block size. Lower skip rates and larger block sizes mean that users can get their transactions included faster and for a lower fee. These two metrics contribute to how many transactions per second Solana can process. Through multiple optimizations and operational practices, Chorus One achieves 11.4% more transactions per second than the network average. If all delegators would delegate to validators who perform as well as Chorus One, Solana would be able to process 11.4% more transactions per second.

About Chorus One

Chorus One is a leading institutional staking provider, securing over $3 billion in assets across 60+ Proof-of-Stake networks. Since 2018, Chorus One has been a trusted partner for institutions, offering enterprise-grade solutions, industry-leading research, and investments in cutting-edge protocols.

Networks
Babylon Bitcoin Staking: Top 10 things to know about the Mainnet Launch
10 key insights about Babylon's Mainnet launch
August 19, 2024
Time to read: 5 minutes
5 min read

The upcoming launch of Babylon’s Bitcoin Staking Mainnet marks a significant milestone in the cryptocurrency landscape and in the evolution of Bitcoin. Babylon is redefining the utility of Bitcoin by integrating it with Proof-of-Stake (PoS) systems, offering new opportunities for Bitcoin holders. Here’s what you need to know about this launch:

1. What is Babylon Bitcoin Staking?

Babylon’s Bitcoin Staking allows Bitcoin holders to participate in the security of PoS blockchains without transferring their assets to a third party. Traditionally, Bitcoin has been seen as a store of value, but Babylon expands its utility by enabling Bitcoin to play an active role in securing various PoS ecosystems. This is achieved through a trust-minimized protocol that connects Bitcoin holders with the demand for network security across multiple blockchain systems, including PoS chains. Read our comprehensive overview of Babylon here.

2. What is Babylon’s Mainnet Launch?

The mainnet launch of Babylon represents the transition from a developmental stage to a fully operational network. This is when the protocol becomes available for public use, allowing Bitcoin holders to start staking their assets on a live blockchain. The launch is designed to be phased, ensuring that each component of the network is thoroughly tested and integrated before moving to the next stage. This approach provides a structured rollout, allowing users to gradually engage with the staking process.

3. What Are the Three Phases of the Launch?

Babylon’s mainnet launch is divided into three distinct phases, each with specific goals and functionalities:

  • Phase 1: Bitcoin Locking
    • This phase initiates the staking process. Bitcoin holders can begin locking their Bitcoin by submitting Bitcoin staking transactions directly to the Bitcoin blockchain. These transactions secure the Bitcoin within a self-custodial staking script, where it is prepared to participate in PoS consensus validation. Stakers also designate a finality provider by specifying the provider's public key, allowing their Bitcoin to be used in the PoS process without actually transferring the Bitcoin to the provider.
  • Phase 2: Bitcoin Staking Activation
    • In this phase, Babylon will launch its PoS chain, which will begin receiving security from the Bitcoin locked in Phase 1. Finality providers who have received adequate delegations from Bitcoin stakers will participate in the consensus of the Babylon PoS chain, helping to determine the finality of its blocks. This phase also introduces the Bitcoin timestamping protocol, which ensures cross-chain time synchronization, a crucial aspect of maintaining security across multiple blockchains.
  • Phase 3: Bitcoin Multi-Staking Activation
    • The final phase transforms Babylon into a marketplace for shared security. This allows Bitcoin holders to stake their assets across multiple PoS systems, earning rewards from various sources. The Babylon PoS chain will act as a control plane, facilitating the staking process across different blockchains and ensuring that Bitcoin’s security is effectively leveraged across the ecosystem.

4. What Can You Do in the Babylon Mainnet Launch?

During the Babylon mainnet launch, Bitcoin holders can actively participate in securing PoS blockchains by locking and staking their Bitcoin. In Phase 1, you can initiate staking by locking your Bitcoin in a secure, self-custodial vault on the Bitcoin blockchain. As the launch progresses into Phase 2, your locked Bitcoin will begin to contribute to the consensus process of the Babylon PoS chain. By Phase 3, you’ll have the ability to stake your Bitcoin across multiple PoS chains, maximizing your potential rewards and playing a crucial role in the security of these networks.

5. How Can You Stake Your Bitcoin?

Staking your Bitcoin with Babylon is a multi-step process that begins in Phase 1:

  • Bitcoin Locking: Start by submitting a Bitcoin staking transaction to the Bitcoin blockchain. This locks your Bitcoin in a self-custodial script, ensuring that your assets remain secure and under your control.
  • Choosing a Finality Provider: When locking your Bitcoin, you will specify the public key of a finality provider like Chorus One, which is the entity that will use your Bitcoin’s staking power in the PoS system. If you hold the private key corresponding to this public key, you can self-delegate, retaining full control over your Bitcoin.
  • Staking Activation: In Phase 2, your locked Bitcoin will be activated to participate in PoS consensus, contributing to the security of the Babylon PoS chain.

6. What Rewards Can You Get?

In Phase 1, there are no direct staking rewards because the PoS chain is not yet active. Instead, Babylon introduces a point system to track staking activity. These points, though they do not have direct monetary value, could potentially be used for future benefits within the Babylon ecosystem. As the network progresses into Phase 2 and beyond, your Bitcoin will earn rewards based on its contribution to the security of the PoS systems, allowing you to gain value from your staked assets.

7. Which Wallets Can You Use?

To stake your Bitcoin with Babylon, you’ll need a compatible Bitcoin wallet. The official Babylon staking web application (btcstaking.babylonlabs.io) provides a list of verified finality providers and supports most Bitcoin wallets. You can also use third-party services such as staking websites, custody solutions, or command-line interface (CLI) tools if you are more technically inclined. It’s important to choose a wallet that meets your security needs and is compatible with the staking process. Here’s a list of supported wallets:

  1. OKX Wallet
    • Type: Software Wallet
    • Platforms: Web, Extension, Mobile
  2. Bitget Wallet
    • Type: Software Wallet
    • Platforms: Web, Extension, Mobile
  3. OneKey Wallet
    • Type: Hardware and Software Wallet
    • Platforms: Desktop, Mobile, Hardware Bridge, Extension, Web
  4. Binance Web3 Wallet
    • Type: Software Wallet
    • Platform: Binance App
  5. Tomo Wallet
    • Type: Software Wallet
    • Platforms: Extension, Mobile
  6. Keystone Wallet
    • Type: Hardware Wallet
  7. imToken Wallet
    • Type: Software and Hardware Wallet
    • Platform: Mobile

8. What Are the Transaction Details in Phase 1?

During Phase 1, all transactions are conducted on the Bitcoin blockchain. These include:

  • Staking Transactions: Used to lock Bitcoin and initiate the staking process.
  • Unbonding and Early Withdrawal Transactions: If you wish to withdraw your Bitcoin before the staking period expires, you’ll need to submit an unbonding transaction, followed by a withdrawal transaction after a waiting period of approximately seven days.
  • Automatic Expiration and Withdrawal: If you do not withdraw your Bitcoin early, it will automatically become available for withdrawal after 64,000 Bitcoin blocks (around 15 months).

Notably, there is no PoS slashing in Phase 1, meaning your staked Bitcoin is not at risk of being slashed for any consensus violations.

9. What Are the Limits and Caps in Phase 1?

To ensure security and broad participation, Phase 1 introduces several limits:

  • Total Staking Cap: Initially set at 1,000 Bitcoins, this cap controls the total amount of Bitcoin that can be staked during this phase. Stakes are accepted on a first-come, first-served basis.
  • Minimum and Maximum Stakes: The minimum stake is set at 0.005 Bitcoins, ensuring that the staking amount can cover transaction fees. The maximum stake is capped at 0.05 Bitcoins, encouraging widespread participation and preventing any single entity from dominating the staking pool.

These caps and limits are designed to foster a secure and inclusive staking environment.

10. Eligibility and Security Considerations

Before participating in the Babylon mainnet launch, it’s crucial to ensure you meet the eligibility criteria. Staking is prohibited for residents of certain countries, including the United States, Canada, Australia, and Mainland China, due to regulatory restrictions. Additionally, Babylon has implemented robust security features, such as the covenant committee, a multi-signature verification scheme that ensures the safety and correctness of unbonding transactions.

The Babylon Bitcoin Staking Mainnet launch represents a significant evolution in how Bitcoin can be used within the broader blockchain ecosystem. By participating in this launch, you can contribute to the security of PoS systems, earn rewards, and engage with one of the most innovative protocols in the cryptocurrency space. As the launch progresses, staying informed and involved will be key to maximizing your experience with Babylon.

Final word

And that's everything you need to know to be prepared for the mainnet launch. Stay tuned and follow us on Twitter/X to stay ahead of the curve.

Ready to start? Stake your first BTC with Babylon and Chorus One today!

About Chorus One

Chorus One is one of the biggest institutional staking providers globally, operating infrastructure for 60+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures. We are a team of over 50 passionate individuals spread throughout the globe who believe in the transformative power of blockchain technology.

No results found.

Please try different keywords.

 Join our mailing list to receive our latest updates, research reports, and industry news.