Blog

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Introducing the OPUS Pool: ETH staking for All
Stake any amount of ETH, mint osETH, and restake with EigenLayer in a single move.
February 6, 2024
5 min read

We’re thrilled to announce the launch of Chorus One's newest offering: the OPUS Pool. Until recently, a minimum threshold of 32 ETH was required for users to stake ETH on OPUS. But not anymore! Going forth, users may stake any amount of ETH directly via the OPUS Pool, mint osETH, and deposit into EigenLayer in one go.

Users have the extra benefit of depositing not only osETH, but any other accepted liquid staking tokens (currently, wbETH, rETH, cbETH, stETH, oETH , ankrETH , swETH, ETHx)  into EigenLayer through the OPUS Pool!

Additionally, Institutional clients can leverage the OPUS SDK to integrate ETH staking into their offerings, providing their customers with all the benefits of the OPUS Pool seamlessly.

Start using OPUS Pool to stake ETH. Visit https://opus.chorus.one/pool/stake/  

In this article, we’ll dive into why we launched the OPUS Pool, its benefits, how it’s different from existing liquid staking options, and how you can deposit various liquid staking tokens including osETH, wbETH, rETH, cbETH, stETH, oETH , ankrETH , swETH, ETHx into EigenLayer in a single move on the OPUS Pool.

Liquid Staking vs Traditional Staking

Liquid staking is a mechanism that enhances traditional staking by introducing liquidity to staked assets. Unlike traditional staking, which necessitates locking up cryptocurrency to support a network’s operations and security, liquid staking allows participants to retain the fluidity of their assets. Through liquid staking, users stake their crypto with a liquid staking protocol and receive a token in return—this token symbolizes the staked amount and any accrued rewards or penalties.

The critical distinction lies in the usability of these new tokens: they can be freely traded or utilized within the DeFi ecosystem, thus allowing stakers to earn additional yields or use them as collateral in various financial protocols. This creates a dual advantage by enabling participation in network validation and security processes, akin to traditional staking, while simultaneously providing liquidity and opportunities to compound rewards in the broader DeFi space.

The OPUS Pool democratizes access to staking rewards by removing barriers such as minimum staking requirements and the need for technical infrastructure, making it an attractive option for a wider range of investors.

The OPUS Pool: What is it, Benefits, and Use Cases

The OPUS platform, initially requiring a 32 ETH minimum for validator node operation, has evolved. Now, anyone can stake any amount of ETH (and even restake them) with Chorus One, using our OPUS Pool.

The OPUS Pool, powered by Stakewise smart contracts which have undergone rigorous auditing by esteemed security firms, not only facilitates greater participation in securing the network but also allows a wider range of Chorus One stakers to earn rewards and gain access to a suite of benefits, including top-tier MEV yields, low fees, and the assurance of enterprise-grade security, among others.

The Unique Benefits of OPUS Pool

  1. Stake any amount of ETH and mint osETH

As previously mentioned, the OPUS Pool enables any user to stake any amount of ETH and receive rewards instantly. Additionally, users have the ability to mint osETH, a liquid staking derivative, and use it in DeFi or deposit into EigenLayer to gain additional rewards directly on OPUS Pool in one go.

  1. Low Fees

The OPUS Pool sets itself apart from current liquid staking protocols by offering users the advantage of highly competitive staking fees. At just 5%, our fees are among the lowest in the industry, making it more accessible for a broader spectrum of users to stake their ETH and earn rewards.

  1. Top-Tier MEV Yields:

As pioneers in MEV research, our latest ace, Adagio, is an MEV-Boost client that changes how transactions are handled for increased MEV capture.

Adagio's design allows for more efficient interactions with Ethereum’s transaction supply chain, directly enhancing MEV rewards for stakers. Fully integrated with OPUS Pool validators, Adagio ensures that anyone staking on OPUS Pool can benefit from these increased MEV rewards.

Want to learn more about Adagio and its mechanics? Read all about it here.


  1. Restake osETH, wbETH, rETH, cbETH, stETH, oETH , ankrETH , swETH, ETHx  with EigenLayer in One Go.

OPUS Pool offers a unique feature: users can deposit not only osETH minted through OPUS Pool but also liquid staking derivatives like osETH, stETH, cbETH, and rETH minted on other platforms, directly into EigenLayer.

This flexibility allows users to either mint osETH with OPUS Pool and deposit it into EigenLayer, or bring in any accepted liquid staking derivatives and seamlessly deposit them into EigenLayer in a single step.

Before we delve into the specifics of starting your staking journey with OPUS Pool, let's first understand what restaking is and how it's executed through EigenLayer.

Restaking and EigenLayer in a Gist

Restaking in the context of Ethereum, as defined by Vitalik Buterin, is a process that allows Ethereum stakers to extend their staked assets' utility beyond the Ethereum network. It means that while your ETH remains staked on Ethereum, you can also leverage its staking power across other blockchain networks. This innovative approach enables new blockchain networks to utilize Ethereum's established validators and staked tokens for securing their trust systems.

Restaking offers stakers the flexibility to contribute to the security of multiple networks, potentially earning rewards, verifying trust, or engaging in blockchain events. It represents an evolution in blockchain participation, broadening the scope and impact of staked assets without requiring additional token allocation.

EigenLayer revolutionizes this concept by implementing smart contracts on Ethereum to facilitate restaking.

It creates a market-driven ecosystem where security is pooled and governed by supply and demand. Users that stake $ETH can opt-in to EigenLayer smart contracts to restake their $ETH and extend cryptoeconomic security to additional applications on the network. Part of EigenLayer’s potential, therefore, lies in its ability to aggregate and extend security through restaking and to validate new applications being built on top of Ethereum.

Actively Validated Services (AVS), essentially new projects or applications building on Ethereum, can tap into this pool, consuming security based on their needs while validators contribute at their discretion, weighing risks and rewards. This system negates the need for AVSs to establish their own validator networks, instead allowing them to utilize Ethereum’s existing security infrastructure.

For a more comprehensive overview of EigenLayer and how it addresses current challenges in Ethereum security, please read our latest blog.

How does the OPUS Pool Work?

Currently, there are two ways in which you can use the OPUS Pool. The first method involves minting your osETH through OPUS Pool and depositing it directly into EigenLayer, while the second method enables you to skip minting osETH and directly deposit any accept liquid staking tokens (osETH, cbETH, stETH, rETH) directly into EigenLayer on the OPUS Pool.

Both methods are made as simple as possible to enhance your staking experience, and can be completed in just 3 steps, as described below:

  1. Stake ETH, Mint osETH, Deposit osETH into EigenLayer on OPUS Pool in the same flow.

Step 1: Connect your wallet on the OPUS Pool page and deposit some ETH into the pool.

Step 2: Once deposited successfully, you can now mint your osETH in 1-click.

Step 3: Deposit your osETH into EigenLayer.

  1. Bring your liquid staking derivatives (osETH, cbETH, stETH, rETH) minted on any external platform and deposit them into EigenLayer through OPUS Pool.

Step 1: Go to the OPUS Pool page, select Restake and connect your wallet



Step 2: Select token of your choice (osETH/stETH/cbETH/rETH ) and enter amount to Restake

Step 3: Deposit your tokens into EigenLayer

The OPUS SDK

Our institutional customers may opt in to leverage the OPUS SDK to integrate ETH staking into their offerings, providing their customers with all the benefits of the OPUS Pool seamlessly.

This allows our institutional client’s customers to benefit from all the  features offered by the OPUS Pool, including no minimum ETH required to stake, top tier-MEV yields, high rewards, and direct restaking with EigenLayer.

Ready to Stake?

For a more detailed, step-by-step explanation of how you can stake your ETH and deposit into EigenLayer, please view our guide here.

To start staking on OPUS Pool, visit https://opus.chorus.one/pool/stake/

For institutions interested in learning more about the OPUS Pool SDK, please get in touch with our team at staking@chorus.one

Resources

A step-by-step guide to staking ETH on OPUS Pool

Restake with EigenLayer Seamlessly via Chorus One's OPUS Pool: A Detailed Guide

Learn more about Adagio, Chorus One’s pioneering Ethereum MEV-Boost client

MEV Max - Introducing Chorus One’s Liquid Staking Pool on Stakewise V3

Considerations on the Future of Ethereum Staking

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Chorus One partners with BitGo to offer institutional-grade staking for ZetaChain
Read our Network 101 for a concise overview of ZetaChain and how you can stake $ZETA seamlessly with Chorus One
January 31, 2024
5 min read

We're proud to announce our latest partnership with BitGo, an industry-leading digital asset custodian, to provide institutional-grade staking for ZetaChain. In this article, we provide an overview of everything you need to know about ZetaChain and how it works. To start staking ZETA seamlessly with Chorus One, simply reach out to us at staking@chorus.one!

“To be interoperable, or not, that is the question”

Facing the decision of which blockchain to build on is among the most challenging dilemmas for developers. Various factors, including the security of the underlying chain, cost, and its throughput, play a crucial role in influencing this decision. With the proliferation of blockchains, it has become evident that no single chain can dominate them all. Thus, the notion of interoperability has gained significance. Interoperability entails the capacity for users to engage in transactions across multiple chains, resulting in increased liquidity, enhanced capitalization, a larger user base, and greater innovation in use cases overall. Numerous mechanisms have endeavored to address this challenge through means such as bridges (e.g., Wormhole, Allbridge), and interoperability standards (IBC). However, these initiatives still grapple with problems like centralization, diminished user experience, the necessity for protocols to conform to specific standards, and vulnerability to exploits. Achieving genuine interoperability remains elusive at present. This is precisely where ZetaChain steps in.

Left - Interoperability today. Right - Interoperability with ZetaChain. Source: ZetaChain

What is ZetaChain?

ZetaChain is a Proof-of-Stake blockchain built on Cosmos SDK and Tendermint PBFT (Practical Byzantine Fault Tolerance) consensus engine. As a result, ZetaChain enjoys fast block time and instant finality. Smart contracts on ZetaChain support arbitrary logic that executes conditionally on external chain events, and can directly update external chain states via its TSS (Threshold Signature Scheme) signed transactions. ZetaChain thereby enables omnichain dApps that interact with different blockchains natively and directly without wrapping or bridging any assets. Unlike Ethereum where a smart contract can be trusted to manage assets according to predetermined rules, except on ZetaChain, a smart contract can leverage and manage assets on any connected blockchain.

Do we need one more chain that promises interoperability?

If you've ever explored bridging or engaging in cross-chain transactions, you've probably encountered the challenge of true interoperability. Blockchains usually operate as closed systems, limiting transactions to the state of their respective blockchain. External information integration into the blockchain without a trusted third party, like an oracle, is not reliably achievable. For transactions that span multiple blockchains, reliance on a trusted intermediary, often a CEX (centralized exchange), is currently necessary. Consequently, there's a lack of a decentralized, permissionless, and public service enabling generic atomic transactions involving multiple blockchains. Even platforms like Cosmos, while enabling the creation of interoperable blockchains, require additional bridging mechanisms to connect with chains beyond the IBC ecosystem.

ZetaChain aims to solves this problem of partial interoperability.

Architecture of ZetaChain

In this section, we break down the different architectural elements of ZetaChain and its roles.

Validators : ZetaChain uses the Tendermint consensus engine, each validator node can vote on block proposals with voting power proportional to the staking coins (ZETA) bonded. We cover more about the ZETA coin below. Just like other chains, validators need to be online all the time, ready to participate in the constantly growing block production. In exchange for their service, validators will receive block rewards, and potentially other rewards such as gas fees or processing fees, proportional to their bonded staking coins. Contained within each validator is the ZetaCore and ZetaClient. ZetaCore is responsible for producing the blockchain and maintaining the replicated state machine. ZetaClient is responsible for observing events on external chains and signing outbound transactions. ZetaCore and ZetaClient are bundled together and run by node operators. Anyone can become a node operator to participate in validation provided that enough ZETA are staked. Chorus One is one of the node operators and you can stake your ZETA with us to ensure high rewards backed by robust security.

Observers: Observers are tasked with monitoring external chains for relevant transactions. This observer system is segmented into two key roles: sequencers and verifiers. The sequencer's responsibility is to identify relevant external transactions, events, and states, reporting them to the verifiers. The verifiers verify and vote on ZetaChain to reach consensus. The sequencer does not need to be trusted, but at least one honest sequencer is needed for liveness.

Signers: ZetaChain possesses a set of standard ECDSA/EdDSA keys that facilitate authenticated interactions with external chains. To prevent any single entity or a small fraction of nodes from having the ability to sign messages on behalf of ZetaChain on external chains, these keys are distributed across various signers to ensure that only a supermajority of them can sign on behalf of ZetaChain and it employs bonded stakes and a system of positive and negative incentives to ensure economic safety.

In practice, all above roles (except sequencer) are collocated in the same computer node, sharing software and credentials such as validator keys and bonded stakes and the associated rewards/slashing.

High level architecture of ZetaChain. Source: ZetaChain whitepaper

The ZETA token

ZETA token is a multi-chain utility token that play various roles like:

  • Securing the ZetaChain conensus via staking/delegation/slashing.
  • Gas asset used to pay gas fees on multiple chains
  • Represent value that can transfer from one blockchain to another

Total initial supply: 2,100,000,000 (two billion, one hundred million)

Inflation:  10% of the total supply (210m ZETA)  is allocated to the initial emissions pool on ZetaChain. This pool allows for block rewards targeted to sustain and secure the network over the first 4 years of network growth. After this pool is depleted, the protocol will introduce a planned 2.5% inflation through validator rewards, separate from the emission curve. More information here.

Summing up ZetaChain

As we’ve seen above, ZetaChain promotes true interoperability between different blockchains and has a unique mechanism to facilitate that. There’s no disagreement over the fact that we’ll have dozens of chains with their own use-cases and the current interoperability solutions do not provide a great user experience or efficient capital flow. We’re proud to be steadfast supporters of ZetaChain and the Cosmos ecosystem in general and look forward to the variety of applications that ZetaChain can enable. From multi-chain NFTs to omnichain DeFi, the possibilities are endless.

How to stake ZETA with Chorus One?

Ready to stake $ZETA? Simply reach out to us at staking@chorus.one, and we'll get you set up in no time!

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

How Soarchain unlocks dePIN's potential
A deep-dive on Soarchain, and how it unlocks the full potential of DePin technology
January 26, 2024
5 min read

In an era of rapid technological evolution, Soarchain emerges as a vanguard in the automotive industry, redefining the landscape of vehicle-based applications and services. By harnessing the power of blockchain and hardware, Soarchain simplifies the complexities of vehicular connectivity, offering a platform for applications ranging from real-time insurance adjustments to AI-driven diagnostics and safety enhancements. With its Layer-1 Decentralized Physical Infrastructure Network (DePIN) built on the Cosmos SDK, Soarchain is set to transform the mobility sector, offering a more inclusive, transparent, and scalable alternative to the proprietary networks dominating today's market.

In this article, we explore how Soarchain unlocks dePIN’s full potential.


Disclaimer: Buckle Up, But Don't Hit the Gas Just Yet!

Quick pit stop to share that we at Chorus One are on the journey with Soarchain as proud investors.

However, please note that our support and enthusiasm for this venture should not be interpreted as financial advice. While we're keen to explore the blockchain landscape with Soarchain, we advise you to make investment decisions based on your own research and judgment. Consider us as companions sharing insights, not as guides for your financial journey.

What is DePIN?

In a gist, DePIN refers to decentralized networks that employ the use of hardware to enhance data collection for specific use cases. For a wider view of the entire ecosystem, please refer to Mesari’s 2023 report.


DePIN & Existing limitations

Traditional Verification Methods and Conflicts of Interest:

  • Traditional methods often lead to conflicts of interest, inactive service providers, and susceptibility to fraudulent activities.

Unwanted Permission Layers and Security Vulnerabilities:

  • Many DePIN systems introduce permission layers or are susceptible to security vulnerabilities. Hardware verification methods, such as manufacturing-embedded key pairs or using secure elements like trusted execution environments, often lead to restricted network access and are prone to security vulnerabilities.

Scalability Constraints and Oracle Problem:

  • DePINs face challenges in verifying physical sensor data due to scalability constraints and the oracle problem (the difficulty of verifying real-world data in a decentralized context).

Specific Network Challenges:

  • Networks like IoTeX face scalability and privacy issues, Helium and MXC deal with centralized hardware dependence, and IOTA grapples with centralization due to its Coordinator.

Verification in DePIN Projects:

  • Current hardware-based approaches to verification, such as embedding key pairs or using trusted execution environments, have limitations like permissioning and vulnerability to hacks.

Incentive Challenges:

  • DePIN networks often suffer from incentive-related issues like self-dealing, lazy providers, and malicious providers.

Soarchain tackles these through decentralized sequencers, governance frameworks, and a layered approach to network architecture, enhancing scalability and privacy.

Soarchain’s Governance Framework

Soarchain introduces a robust architecture for onboarding new factory manufacturers and hardware providers in a secure and scalable manner.

The Hierarchical Certificate System
  • Master Certificate: The Soarchain Master Certificate sits at the apex of this structure, acting as the ultimate authority and trust anchor. It meticulously verifies and authorizes factory certificates, forming the backbone of the network’s security and trust.
  • Factory Certificates: These certificates, issued to hardware manufacturers, symbolize their commitment to quality and security. They play a crucial role in integrating new hardware providers into the Soarchain ecosystem, ensuring that each component adheres to the highest standards.
  • Device Certificates: At the grassroots level, device certificates verify the authenticity of individual hardware devices, safeguarding against tampering.

Manufacturers can generate a Certificate Signing Request (CSR) using the on-chain Root Certificate through governance proposals. Soarchain aims to incorporate tier-1 manufacturers. This specifically targets those incorporating secure elements in their Electronic Control Units (ECUs) or modules, a growing trend for enhanced security in automotive electronics. This integration will unlock new possibilities on Soarchain, like supply chain management, manufacturing process optimization, and trustless Over-the-Air updates for ECU firmware/software, a long standing costly challenge.

The system allows factories to submit governance proposals for inclusion, followed by proposals to issue a certain number of certificates. A key concern is that issuing non-time-bound or non-quantity-bound certificates grants manufacturers indefinite production rights. This could lead to a lack of accountability for their manufacturing processes and the products they produce. This innovative approach leverages Cosmos SDK and democratizes the onboarding of new manufacturers. It ensures that every level of the manufacturing and device integration process is secure, flexible, transparent and scalable.

Scaling with the Runner Network - The Celestia of DePIN

To address scalability, Soarchain implements a layer-2 solution with runner nodes that handle the bulk of data processing. This significantly reduces the load on the main blockchain and enhances the network's capacity to handle large data transactions. Runner nodes in Soarchain parallel the function of sequencers in the Celestia network. They manage data flow, gather public keys, create Merkle trees, and submit these summaries to the blockchain. From the Layer 1 perspective, the addition of thousands of vehicles and hundreds of thousands of new messages translates to only a moderate increase in network transactions.

Soarchain employs a Verifiable Random Function (VRF) within its core layer-1 virtual machine to dynamically select a consensus group from the pool of runners, preventing data validation centralization and potential collusion, operating like a decentralized sequencer. Runners in the consensus group are tasked with receiving, ordering, and verifying messages from vehicles, using these to create Merkle trees. They then generate and submit claims about these trees to validate their honesty and correctness. The system involves a distributed key generation process (Shamir Secret sharing algorithm) and threshold public key encryption to ensure that the content each runner submits is identical, maintaining the integrity of the verification process.

Users can operate a 'runner' via the Motus Connect and Drive mobile app. This setup allows users to earn extra network rewards. Runners are akin to Celestia's light clients but with an added responsibility: they sequence messages and verify their authenticity, ensuring the content is original, unaltered, and plausible. Similarly, more runners in Soarchain increase the number of supported vehicles, thereby expanding the network's message broadcasting capacity (as long as a certain percentage of full / validator nodes operate as runners).

Runners are also required to delegate a minimum amount of tokens to a validator. This serves two purposes:

  • It prevents unhealthy competition between runners and validators. As the number of runners grows, more tokens are delegated to validators, enhancing network security.
  • It ensures runners have a stake in the network, aligning their interests with its overall health and security.

Just like that, Soarchain presents the first ever mobile / app based shared sequencer to operate light clients.

Solving Privacy: The Role of zk-SNARKs

Soarchain has integrated zk-SNARKs, particularly through the Groth16 scheme, to ensure robust data verification while maintaining confidentiality. This technology allows vehicles to generate cryptographic proofs of data authenticity and integrity without revealing the underlying data, thereby preserving privacy.


Uses of zk-SNARKs
  • At the core of Soarchain's privacy solution are Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge (zk-SNARKs).
  • This cryptographic method allows vehicles within the Soarchain network to prove the authenticity and integrity of their data without revealing the actual content.
  • The integration of zk-SNARKs maintains data confidentiality, ensuring sensitive vehicular information remains private.

Data Verification and Privacy
  • Vehicles transmit Parameter IDs (PIDs) to the blockchain, which are standardized diagnostic codes containing vital vehicle information.
  • This data is securely signed with the vehicle's certificate (containing public keys) derived from device certificates, validating the data's origin and ensuring integrity.

The use of zk-SNARKs, particularly through the Groth16 scheme, allows for efficient management of multiple proofs for similar types of PID data, crucial in Soarchain's network. Soarchain employs a unique method to verify the plausibility of PIDs (Parameter IDs) through two approaches: individual analysis of each PID and joint analysis of PIDs with known high correlations.  Each Performance Indicator Data (PID), like fuel pressure or engine temperature, is validated meticulously, ensuring the accuracy and reliability of data transmitted via distributed MQTT brokers. This process ensures user privacy, as it doesn't require decrypting plaintext data on the public blockchain. Instead, plausibility checks are conducted while preserving privacy. This is made possible through specially designed arithmetic circuits, verified using zero-knowledge methods, ensuring that no sensitive data is exposed during the verification process.

A physical decentralized oracle

The oracle problem, particularly in the context of Soarchain, refers to the challenge blockchains face in accurately interacting with external, real-world data. For Soarchain, this data is physical, real-time mobility information generated by sensors, cameras, and actuators on vehicles and road users. The key issue is ensuring the data's authenticity and that the data sources are honest. To address this, Soarchain uses hardware equipped with a secure element, ensuring that a) the hardware runs the intended firmware, preserving the operational integrity, and b) private keys corresponding to public keys and certificates are securely stored, safeguarding the security, integrity, and authenticity of the data.

Once these pre-verification checks are completed, the data is transformed into "messages" akin to transactions and sent to Soarchain's verification layer. This layer constructs Merkle trees using these messages and generates a proof once a certain number of messages are aggregated. The proof is then submitted to the chain, and the metadata of the data is immutably recorded on the blockchain. This process enables any entity on the chain to interact with a reference to the proven and verified data originating from real-life sources.

To overcome the oracle problem's scalability constraints and complexities, Soarchain combines decentralized oracle systems with hardware-accelerated and proof-based mechanisms. While centralized oracle solutions pose a risk of single-point failure and require significant trust, decentralized oracles, though more secure, often lack a hardware-accelerated, proof-based system. Soarchain's runner architecture not only serves as an incentivized, trust-minimized oracle network, but it also acts as a scaling layer. This allows for the aggregation and proof of pre-verified data messages without needing to submit each message in full to the blockchain. This method significantly reduces the burden on the blockchain while maintaining the integrity and trustworthiness of the data being processed.

Conclusion

In conclusion, Soarchain stands at the forefront of revolutionizing decentralized mobility and related applications. Its robust Layer 1 blockchain technology enables a myriad of real-world applications, from decentralized ride-sharing platforms, offering a more equitable and transparent system, to smart parking solutions that ensure secure, fraud-resistant transactions. Additionally, Soarchain plays a pivotal role in the coordination of autonomous vehicles, promoting safety and efficiency through real-time communication and decentralized consensus.

Soarchain represents a significant leap forward in the world of decentralized networks. Its innovative governance framework, the integration of zk-SNARKs for data verification, and the unique approach of using runner nodes and a decentralized sequencer collectively forge a path towards a more secure, scalable, and trustable digital future. With these technologies, Soarchain is not just solving the present challenges of dePINs but also paving the way for the untapped potential of hardware based decentralized networks.

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Ecosystem Review - Injective
As part of the first edition of our ecosystem review series, published originally in our Q3 Quarterly insights, we take a closer look at Injective and provide a comprehensive overview of the current state of the ecosystem.
January 9, 2024
5 min read
  • This is an excerpt from the Quarterly Insights Q2 2023 report. Find the full report, here.

The Cosmos ecosystem is one of the most diverse in crypto as it allows for experimentation and simple bootstrapping of new ideas, due to the accessibility of the Cosmos SDK stack. The result is the launch of multiple chains on a monthly basis, each one targeting specific issues or innovative solutions. As a recent highlight, the Cosmos Hub is on the forefront, with the implementation of ICS v1 (“replicated security”), becoming the first shared security solution in production.

The previous edition of our Quarterly Insights report covered the basic concepts and related projects pushing the boundaries for innovative solutions in staking. You can download it here.

This article starts a series of reviews of well known projects, aiming to uncover the present state of these “long lived” protocols. This edition focuses on Injective, a fast and cheap blockchain built for finance, featuring 0.9s block times and less than $0.01 fee per transaction. Injective provides infrastructure that is optimized for enterprises to build a diverse array of institutional grade financialapplications. An example of a high level contribution is the module that allows the implementation of an on-chain order book. The OpenDeFi Foundation is the non-profit organization behind the Injective protocol. Backers include high profile names, such as Binance, Jump, Pantera and Mark Cuban.

Technical architecture

Injective is a Layer 1 (L1) blockchain built on top of the Cosmos SDKand the CometBFT Consensus protocol. The network is operated by60 validators at the time of writing. The number of validators may seem low when compared to other delegated PoS blockchains (e.g.Solana: 1900 validators), but it can still be considered similar to otherCometBFT based chains. The protocol is proof-of-stake based and has a limited validator set to optimize for throughput. The expected tendency is for the network to be secured also by social consensus,with delegators working on identifying more reliable and trustedvalidators to delegate to.

In the Injective case, the super-majority is formed by 4 validators that hold more than 33% of voting power at the time of writing.Aware of the risks imposed by centralization, and to incentivize contributions from other node operators to the development of the ecosystem, the Open DeFi Foundation recently announced theFoundation Delegation Program to increase the voting power controlled by relatively smaller validators.

From a validator's perspective, Injective can be a demanding network to run due to its short block times and, consequently, higher chance of failing to sign blocks. This characteristic is reflected in the validator “uptime”, which varies from 80% to 99% on Injective amongst all validators, while for other networks the uptime is on average closer to 100%. The update process has consistently been well-managed and smooth. Overall, we have a positive impression of the network's technical architecture.

Staking distribution at the time of writing. Source: https://www.mintscan.io/injective/validators
Activity

The most popular dApp on Injective is Helix, a decentralized exchange that allows for spot and derivatives trading of cross chain assets. More than $10B have been traded since the launch in November 2021, with derivatives being responsible for $9.3B. The total value locked in pools (TVL) is $11.5M and the most active perpetual markets are BTC/USDT and ETH/USDT. INJ/USDT is the most liquid spot market.

Helix creates a seamless trading experience, with a  user interface comparable to a centralized exchange, low costs and advanced features, such as order types, graphical indicators and liquidity analysis. To start using Helix, users can connect from a Metamask, Keplr, Ledger, Cosmostation, Leap, or Trezor wallet.

Injective trading interface. Source: https://helixapp.com/futures/btc-usdt-perp

The Open Liquidity Program (“OLP”) is an initiative recently announced to foment on-chain liquidity: beginning June 13, 2023,60,000 INJ can be earned during each epoch by those executing trades through the API or on decentralized exchanges built onInjective. The program prioritizes deep, long lasting liquidity, by using the following metrics to measure the quality of the activity: dual sidemarket making, uptime, volume and spread. All information on the reward calculations and API can be found in the OLP docs here.

Additionally, the first Injective Hackathon recently concluded, with the submission of 300 projects, and 357 builders, attracting developers, entrepreneurs, and blockchain enthusiasts, the four week online event fostered new innovations across Web3. Highlights from submissions involve options trading, asset management tools, money marketing platforms and NFT marketplaces. Additionally, the Injective Ecosystem Venture Group is a group of prominent institutions and venture funds that have come together to back the future of the protocol with a $150 million initiative. The focus is to support promising projects building within a diverse array of sectors including interoperability, DeFi, trading, PoS infrastructure, rollups and scalability solutions. Visit the official page to be informed on criteria and the process to apply.

Cross-chain Composability

Given Wormhole integration and IBC compatibility, from the userperspective, it is fairly easy and cheap to interact with multiple blockchains from- and to- Injective. According to the Map of Zones, Injective communicates with 19 different Cosmos chains. The biggest flow of assets happens between Injective and the CosmosHub.

In May 2022, the protocol started working with the Wormhole bridge, making it easier for users and developers to interact with other blockchains. The most common asset bridged to Injective isUSDT, with more than 11 million of USDT at the time of writing. Other bridged assets include wETH, USDC, SOL, wMATIC and LINK.

Also, in March 2023, Cascade was launched - a layer-2 testnet that utilizes the Solana’s Sea Level Virtual Machine (SVM) provided byEclipse. This means that Solana developers can test their apps for use in the Cosmos without needing to change the programming language or tooling used. More information can be found here. April 2023 was the time for Injective to start communicating with Polkadot. The integration happens through the Celer Bridge, and allows users to transfer INJ, ATOM, ASTR and DOT between the Injective blockchain and the Astar parachain. More information can be found here.

Injective Peers according to Map of Zones.

Economics

Injective mainnet is live since November 2021. INJ, its native token,has multiple purposes in the ecosystem, as it is used:

I. to secure the PoS chain;  

II. to participate in the on-chain governance;  

III. to pay for exchange fees, and in the buy back and burn model;

IV. as margin and collateral backing derivatives positions. The current supply of INJ is 600m tokens and it increases over time through block rewards - incentives to token holders when locking INJ to help secure the Proof of Stake (“PoS”) network (“staking rewards”).

The emission rate (“inflation”) at the time of writing is 10% per year, and 62.5% of INJ total supply is currently locked in staking, resulting in 15% yearly yield. INJ is being traded at $7.94 and the fully diluted market cap is $794million. INJ price has been showing resilience throughout this bearmarket, as it was able to recover a good part of its value, despitemost of the market still struggling with low prices in the same period.

According to IntoTheBlock, Injective has a 94% concentration bylarge holders, i.e. whales - addresses with more than 1%; and investors - addresses with more than 0.1% of circulating supply.

The protocol suggests a global minimum fee structure, meant tofavor those adding liquidity to markets, also known as “marketmakers''. Maker fee is 0.01% of the total amount of the order, whilemarket taker orders - those trading against the orderbook, pay0.02% of the trading amount. Although the maker/taker model iscommon on centralized exchanges, Injective fees are half of what auser would pay when trading on Binance, for example. For a more indepth analysis of fee models in different exchanges, we recommend this article by Deribit.

Additionally, as a way to support the applications, the protocol transfers 40% of trading fees back to the dApp. This value can be used to source the trading activity on the exchange, offering fee rebates and other incentives to increase financial yield to users. The other 60% are kept by the protocol and periodically auctioned in exchange for INJ. The INJ proceeds of this auction are then burned, thus creating a potential deflating mechanism in the total INJ supply.  Each application built on top of Injective may implement fees and incentives in a slightly different way. For example, Helix adds discounts to the taker fees, depending on the amount of INJ staked by the user and the amount traded in the last 28 days. Discounts start at 7.5%, when staking 25 INJ and trading volume $100,000. It can get to 80% for users staking at least 75,000 INJ and $100m trading volume.

$INJ price chart - log scale. Source: https://coinmarketcap.com/currencies/injective/

Wrapping Up

Injective has been actively working on growing its ecosystem, tackling the different aspects to promote the activity and adoption of the network. On the TVL level, Injective is the 52nd chain on the DeFiLlama ranking. There are relatively few spot and derivative markets with significant liquidity levels - greater than $10,000 on the top of the book, and trading volumes are still low compared to otherdecentralized exchanges. On the other hand, Injective provides a fully on-chain experience, in contrast with most decentralized exchanges, through its order book and seamless trading experience, including advanced order types and technical analysis tools, that are partially unique in the crypto space, and we consider to be good differentials for the protocol.

Centralization of stake in a small number of validators is another concern for this network. Both points are subjects of the initiatives created by the Foundation and presented in detail in the previous sections.

When looking at tokenomics, the INJ token is one of the most valuable assets in the Cosmos, second only to the $ATOM token according to Mintscan. It also has multiple use cases, from staking to buy back and burn auction, which tend to power the demand and keep its value in the future. In terms of price, it has shown resilience compared to most assets in the Cosmos ecosystem during the recent tumultuous times crypto and global markets went through. The staking yield of around 15% annually is also aligned with other high value Cosmos chains.

As our final impressions, Injective seems to be taking the right steps to address its short comings while pushing ahead with its coremission. Chorus One is an Injective validator. You can find more information on how to stake INJ tokens on https://chorus.one/crypto-stakingnetworks/injective or reach out to us: staking@chorus.one.

To stay up to date with Injective

Blog: https://blog.injective.com/

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

 Join our mailing list to receive our latest updates, research reports, and industry news.

Want to be a guest?
Drop us a line!

Submit
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.