Blog

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
Guides
Networks
OPUS Pool under the hood
An in-depth guide to restaking osETH on Eigenlayer with Chorus One: In 3 simple steps you can deposit any amount of ETH, mint osETH, and deposit your osETH into Eigenlayer.
February 9, 2024
10 min read

Summary

  • In 3 simple steps you can deposit any amount of ETH, mint osETH as a liquid staking token and deposit your osETH into Eigenlayer. We dive deep into each step and unravel what happens on a technical level.
  • Under the hood, we’re using Stakewise v3, a permissionless non-custodial pooled staking solution. What’s unique about their architecture is the permissionless onboarding and various flavors of vaults (custom MEV strategy, public, private, etc.) that can be setup seamlessly by node operators.
  • Our Stakewise vault allows you to mint osETH- a liquid staking token called osETH to provide liquidity to its stakers. The issued liquid staking token- osETH- is overcollateralized, meaning the underlying assets in the vault are worth more than the osETH issued. One interesting feature of osETH is that it has a built-in slashing protection mechanism for its stakers and an automated liquidation mechanism, to ensure the excess backing of osETH.
  • Even before the Eigenlayer AVS mainnet launch, you will be able to deposit your Liquid Staking Tokens via the OPUS Pool and be early start in the restaking ecosystem. Once the AVS go live, you will be able to delegate to Chorus One and receive rewards from your restaked ETH or Liquid Staking Tokens.
  • To use the OPUS Pool, visit https://opus.chorus.one/pool/
  • For a high level, step-by-step guide on how you can use the OPUS Pool, please visit https://chorus.one/articles/how-to-stake-eth-with-chorus-one-and-restake-with-eigenlayer
  • For an introduction to OPUS Pool, its benefits for institutions and investors, and use cases, please visit https://chorus.one/articles/introducing-opus-pool-eth-staking-for-all

A technical in-depth guide of our OPUS Pool to demystify pooled staking with Stakewise and restaking osETH on Eigenlayer with Chorus One.In a nutshell, the steps are as follows:

  1. Go to Opus Pool, connect your wallet and deposit some ETH into our Stakewise vault.
  2. Once deposited successfully, you can now mint your osETH in 1-click.
  3. Deposit your osETH into Eigenlayer.

These simple steps will get you ready to participate in the restaking ecosystem. If you’re interested in reading more about what happens in each step, below we will unravel what happens under the hood.

Step 1: Go to Opus Pool, connect your wallet and deposit some ETH into our vault

Go to Opus Pool, connect your wallet and deposit some ETH into our Stakewise vault. Traditional staking usually requires a staker to deposit 32ETH to spin up a validator on Ethereum in order to start earning  rewards. Our 1-click staking experience enables users to stake any amount, powered by Stakewise. Stakewise v3 offers a permissionless, non-custodial pooled staking solution enabling any node operator to create a “vault”. A vault is essentially an isolated staking pool managed by the node operator and providing an automated process for ETH deposits, reward distribution, and withdrawals. You can learn more about Stakewise in our extensive guide here.

Under the hood: On a more technical level, when you stake into our Stakewise Pool, the flow works as follows:  

A user deposits ETH into our MAX-MeV Stakewise vault. Once enough ETH has accrued (32 ETH), we can deposit a new validator in our vault. This is done by running an additional piece of software, stakewise v3-operator, alongside our usual Ethereum validator infrastructure, which listens to Deposit events and initiates the validator registration process. This architecture offers some very unique features. For one, the permissionless onboarding. Stakewise makes it possible to create your own vault with customized experiences, such as a private vault- only allowing stake from whitelisted addresses, a public vault- allowing stake from everyone, MEV smoothing and many more. Secondly, the ability to initiate a forced-exit by the Stakewise DAO. The Ethereum protocol requires validator exit messages to be signed with the validator signing key (the key held by the node operator required to operate the validator for signing blocks and attestations).

This means that, until EIP-7002 is implemented to support signing exit messages with withdrawal credentials (the key the staker holds to withdraw their funds), users depend on the node operators to exit validators on their behalf. To remediate this potential attack vector in a fully permissionless environment, there are certain steps a node operator must go through when registering a new validator. They submit shards of their signing keys to all Oracles through a process known as Shamir-secret sharing, a secret sharing algorithm which enables trustless and secure sharing of distributed, private information. Moreover, the pre-signed exit transaction messages are sent to the oracles in an encrypted manner. This allows the DAO to exit a validator on their behalf, should a node operator go rogue. Once oracles have approved registration, the operator sends the validator registration transaction to the so-called Keeper contract- essentially the brain in the architecture- which executes the deposit on-chain. EIP-7002 is still in its design phase, but it will open up new solutions to remove the need for Oracles by enabling the execution layer to trigger validator exits under certain conditions.

After a successful validator registration process, we’re ready to run a validator and collect rewards in our vault. Similarly to other liquid staking protocols, Stakewise relies on several oracles to fetch rewards from the Beacon Chain. Since The Merge, Ethereum’s architecture consists of the Consensus Layer (“Beacon Chain” which contains the consensus state and validator management) and the Execution Layer (“the EVM” which handles execution payloads, maintains a mempool of transactions). While combining both layers facilitated an easy transition to a Proof-of-Stake chain, it left the communication between both layers via Engine API somewhat limited- the Consensus Layer can query the Execution layer, but not the other way round. Essentially this means there’s no trustless way for the EVM to connect to the Beacon Chain to e.g. fetch validator rewards data. As a workaround, Stakewise employs trusted Oracles which regularly fetch rewards data from the Beacon Chain and vote for the rewards/penalties from all vaults. The vault rewards are saved as a Merkle tree and uploaded to IPFS, e.g see this example. The Merkle root is saved in the Keepers contract, again, the brain of our architecture. If you’re not familiar with Merkle trees, proofs and roots, they are one of the founding blocks of how Ethereum works, here’s a recommended read.

Essentially, it’s a data structure that helps us verify data consistency and make efficient proofs of inclusion (Merkle-proofs) to verify a piece of data is in the tree. More concretely, since the Merkle root is stored in the Keepers contract, it’s easy to verify that the stored Merkle tree hasn’t been tampered with.
To keep a vault’s state up to date, the Keeper contract needs to be “harvested”, meaning that the vault can fetch the Merkle root from the Keeper and derive validators rewards/penalties to update its state. If the state isn’t updated in a specified timeframe, any user interaction will be blocked.

With EIP-4788, which is implemented in the upcoming Dencun Upgrade (currently being rolled out to all testnets), the parent (previous) beacon block root will be included directly into the execution block enabling the EVM to access the block root from a trusted source, and thus removing the need for an Oracle and instead, enshrining it in the protocol. The way it will work is similar to the implemented workaround- the parent beacon block root represents the hash of the entire header of the previous block. A smart contract deployed on Ethereum will hold a limited number of parent beacon block roots, such that the execution layer can derive the consensus state in a trustless manner.

With this foundational knowledge in mind, let’s look at a specific example transaction of someone depositing 0.01 ETH into our Stakewise vault:

You can see the address which deposited 0xe46825... calls the deposit function on the Chorus One vault address 0xe6d8d8… . As we mentioned in the previous section, the v3-operator listens to DepositEvents emitted. Looking at the event logs, we get a good glimpse into what happens when you deposit into a vault:

The address is recorded along with the amount of your stake (assets), resulting in a number of “shares”which are calculated as follows: assets * total shares in vault / total assets in vault, see contract code for reference. The calculated shares will be the indicator how much of the rewards accrued by the Ethereum validator will be paid out to the staking  address.

Step 2: Once deposited successfully, you can now mint your osETH in 1-click

Once you’ve deposited successfully in our Stakewise vault, you can go ahead and mint your osETH in 1-click. The minted osETH should be visible in your wallet after the transaction was successful. If it’s not visible, you may need to add the token manually, e.g. for MetaMask see this resource.

Under the hood: As mentioned above, Stakewise offers a liquid staking token called osETH to provide liquidity to its stakers. This is a fantastic improvement on the staking experience, because you get a representation of your staked ETH which you can use to earn additional yield in the DeFi world. During vault setup, a node operator may choose to configure a vault that allows to mint an ERC20 token or whether the vault is tokenless. The issued liquid staking token- osETH- is overcollateralized, meaning the underlying assets in the vault are worth more than the osETH issued in order to cover potential losses from slashing. The biggest risk for staking is the risk of getting slashed, e.g due to double signing, which could result in losing part of the stake. Slashing is usually the consequence of bad key management practices that optimise for speed rather than consistency. It’s therefore important for node operators to apply sound security and key management practices, in order to minimize the risk.

One interesting feature of osETH is that it has a built-in slashing protection mechanism for its stakers. During the minting process you might have noticed that you can only mint up to 90% of the staked ETH. The excess backing insures stakers against poor staking performance or slashing events. Such penalties are absorbed by the excess backing.

To keep track of this, Stakewise defines a certain parameter known as “position health” which monitors the value of osETH minted relative to the value of their ETH currently staked in the Vault (see in screenshot above). The value can be Healthy/Moderate/Risky/Unhealthy. A “Healthy” position means that minted osETH doesn’t exceed 90% of the staked ETH. If the value of minted osETH grows faster and suddenly exceeds 92% of the staked ETH in the vault, the position status will move to “Unhealthy”. Let’s look at a concrete example: Imagine a user minted osETH against a staked position worth 100 ETH in Vault X. Suddenly, Vault X decided to increase its fees much higher than other vaults. During an incident, the node operator was forced to migrate their keys and started producing inconsistent attestations and downtime causing inactivity leaks all resulting in penalties and lower profit accrued in the vault. On top of that the bull market hits and demand for Ethereum validator exceeds current supply making the validator activation queue extremely long, but still growing overall TVL. A month later the minted osETH is now worth 92.01 ETH, making the user's position status "Unhealthy" and opening up for liquidation because the value of minted osETH relative to their ETH stake exceeds the liquidation threshold, i.e. is >92% enabling the DAO to liquidate a vault (if you remember, they have the ability to exit validators on a node operator's behalf), in order to ensure the excess backing of osETH.

Step 3: Deposit your osETH into Eigenlayer

The final step in our OPUS Pool journey let’s you restake your freshly minted osETH and other liquid staking tokens with EigenLayer.

Now what’s Eigenlayer and why will it bring more yield? To sum it up: “Restaking offers stakers the flexibility to contribute to the security of multiple networks, potentially earning rewards, verifying trust, or engaging in blockchain events. Users that stake $ETH can opt-in to EigenLayer smart contracts to restake their $ETH and extend cryptoeconomic security to additional applications on the network”. To read more about how it works, head to our blog article on Eigenlayer.

Under the hood: As of the time of writing, no AVS are live on mainnet yet. Until the EigenLayer protocol goes live with EigenDA (AVS developed by the EigenLayer team), restakers will receive restaked points as a measure of the user’s contribution to the pooled security, while securing the opportunity to be rewarded as an early restaker. Once AVSs go live, you will be able to delegate to Chorus One and receive rewards from your restaked ETH or Liquid Staking Tokens. This graph below shows what will happen once we enter this Stage:  

The (re-)staker deposits their osETH (or other Liquid Staking Tokens) into the EigenLayer StrategyManager contract, which is responsible for accounting and allowing restakers to deposit LSTs into the given strategy contract. When users deposit into the StrategyManager, the funds are transferred to the respective LST’s StrategyBaseTVLLimits contract e.g. osETH or stETH, which returns shares proportionally to the users stake. The number of shares is calculated using an internal exchange rate which depends on the total number of deposits.

Here’s an example transaction of a user depositing osETH into the StrategyManager via our OPUS Pool. The event logs show the address where the funds were deposited from (depositor), the address of the token contract (in this case osETH token contract), and the address of the strategy contract (the address of the osETH strategyBaseTvlLimits contract).

Once the AVSs go live on mainnet, restakers will be able to delegate their LSTs to Chorus One. This is done by calling a function on the DelegationManager which manages delegation and undelegation of the stakers to operators. As of now, this functionality is paused, so stay tuned for the next EigenLayer mainnet upgrade and don’t miss your chance to delegate your restaked tokens to your favourite node operator.

Resources

A step-by-step guide to staking ETH on OPUS Pool

Restake with EigenLayer Seamlessly via Chorus One's OPUS Pool: A Detailed Guide

Learn more about Adagio, Chorus One’s pioneering Ethereum MEV-Boost client

MEV Max - Introducing Chorus One’s Liquid Staking Pool on Stakewise V3

Considerations on the Future of Ethereum Staking

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Networks
News
RollApps and beyond: A comprehensive guide to Dymension
Chorus One is proud to invest and provide insitutional-grade staking services for Dymension
February 7, 2024
4 min read

After what might have been the most anticipated launch so far, we're thrilled to be part of the continued innovation of blockchain technology by championing Dymension, as they work to pioneer the 'Internet of RollApps' with their unique modular features. Chorus One runs a public validator node and has also invested in Dymension through Chorus Ventures.

Dymension makes it easy for anyone to create and deploy their own blockchain, while providing its users the infrastructure and flexibility to scale and compete with other modern-day blockchain implementations.

In this guide, we'll cover what Dymension is and how it's pushing the boundaries of blockchain capabilities.

What is Dymension?

https://dymension.xyz/

Unlike traditional blockchains that integrate data availability, consensus, settlement, and execution into a single layer, Dymension adopts a modular approach. This innovative method allows delegating one or more of these components to external chains, significantly enhancing performance, scalability, and efficiency.

Dymension aims to improve upon the current reliance on shared bandwidth systems used by many popular blockchains by using a multi-layer blockchain protocol. Consisting of a network of modular blockchains, known as "RollApps", these blockchains are powered by the Dymension Hub which is responsible for both consensus and settlement.

While initially the Dymension team will oversee RollApp approvals, the network aims to evolve into a permissionless ecosystem with the ultimate goal of serving as a decentralization router that connects RollApps to the crypto economy. In the long run, this will allow Dymension to be a "Internet Service Provider" for crypto and blockchain technologies.  

To further detail its architecture, Dymension utilizes the Cosmos SDK for interoperability across blockchains, enabling RollApps to efficiently communicate and transact. The use of Tendermint Core for consensus ensures high security and fast transactions across the network. This technical foundation allows Dymension to support a wide range of applications, from finance to gaming, by providing developers with the tools to create highly scalable and customizable solutions.

As Dymension evolves, its architecture is designed to support a growing ecosystem of decentralized applications, ultimately facilitating a seamless connection between users and blockchain services on a global scale.

Dymension's unique proposition lies in its sophisticated modular architecture, designed to decentralize and optimize the components of blockchain functionality. By enabling external chains to handle aspects like data availability, consensus, and execution separately, it aims to not only significantly boost performance but also provide improved scalability and efficiency for all.

Here's how the Dymension team explains the ecosystem:

Dymension is similar to a full-stack web application where users interact with RollApps (front-end), Dymension (back-end) acts as the coordinator for the ecosystem, and the data availability networks (database) provide a place to publicize data.

https://twitter.com/yishayRL/status/1749696640477278702

Key features of Dymension
  • Modular blockchain network: Dymension is a network of modular blockchains called Rollapps offering a flexible alternative to traditional, monolithic blockchain structures like Ethereum.
  • RollApp ecosystem: The network is composed of RollApps, which are modular blockchains responsible for executing transactions within the network, which provides significant flexibility and enhanced performance.
  • Dymension Hub: This central element of the network is responsible for both consensus and settlement, streamlining these critical blockchain functions.
  • Liquidity: Dymension uses an embedded Automated Market Maker (AMM) designed to expose RollApps to efficient asset routing, price discovery, and most importantly shared liquidity for the entire ecosystem.
  • Data availability partnership: Dymension compliments external data availability providers such as Celestia, ensuring robust and efficient data management at scale.
  • IBC implementation: Dymension utilizes the Inter-Blockchain Communication Protocol (IBC), which is critical for facilitating seamless interaction between different blockchain networks.
  • User-friendly RollApp creation: The platform enables easy creation of RollApps, allowing developers to efficiently build and deploy execution layers.
  • Staking mechanics: Using the Cosmos SDK chain, Dymension allows participants to stake or unstake tokens with validators, contributing to the network's security and integrity.
  • Community and developer support: Dymension offers in-depth education, resources, and documentation and is supported by an active community on platforms like GitHub, Twitter, Discord, and Telegram.

https://portal.dymension.xyz/rollapps
Staking mechanics of Dymension

Using the Cosmos SDK, Dymension incorporates a staking mechanism that enables participants to stake or unstake tokens with validators. This feature is central to maintaining the security and integrity of the network, allowing stakeholders to contribute to the ecosystem actively.

To kick off Genesis Rolldrop Season 1, Dymension is working to incentivize its users and builders by providing a significant allocation of tokens to pay tribute to three verticals within crypto, culture, money, and tech.

The tokenomics ($DYM) as of Feb 6th is as follows:  

Total Supply: 1,000,000,000

Chorus One Valoper address: dymvaloper1ema6flggqeakw3795cawttxfjspa48l4x0e2mh

Security

The Inter-Blockchain Communication Protocol is an important aspect of Dymension. IBC is a battle-tested bridging protocol that allows secure communication between different chains. RollApps connect to the IBC economy via Dymension Hub, similar to how a server connects to the internet via an internet service provider.

Dymension is working to reduce the reliance on centralized and commonly used multi-sig bridges prevalent in Ethereum and L2 ecosystems with IBC-connected rollups. By utilizing IBC for rollups, Dymension validates that all funds deposited into a RollApp are as secure as the Dymension Hub itself.

Chorus One's involvement with Dymension

We firmly believe Dymension stands at the forefront of the next generation of blockchain technology, with its modular architecture promising to improve upon scalability and efficiency challenges faced by traditional blockchains. As supporters and collaborators, we continue to advise the team to best position themselves for a successful mainnet launch and beyond.  

We are excited about the potential of Dymension to revolutionize the blockchain ecosystem, reinforcing our commitment to innovation and the growth of blockchain technology.

Useful Links and Resources:

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks, including Ethereum, Cosmos, Solana, Avalanche, and Near, amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Networks
Others
Chorus One partners with BitGo to offer institutional-grade staking for ZetaChain
Read our Network 101 for a concise overview of ZetaChain and how you can stake $ZETA seamlessly with Chorus One
January 31, 2024
4 min read

We're proud to announce our latest partnership with BitGo, an industry-leading digital asset custodian, to provide institutional-grade staking for ZetaChain. In this article, we provide an overview of everything you need to know about ZetaChain and how it works. To start staking ZETA seamlessly with Chorus One, simply reach out to us at staking@chorus.one!

“To be interoperable, or not, that is the question”

Facing the decision of which blockchain to build on is among the most challenging dilemmas for developers. Various factors, including the security of the underlying chain, cost, and its throughput, play a crucial role in influencing this decision. With the proliferation of blockchains, it has become evident that no single chain can dominate them all. Thus, the notion of interoperability has gained significance. Interoperability entails the capacity for users to engage in transactions across multiple chains, resulting in increased liquidity, enhanced capitalization, a larger user base, and greater innovation in use cases overall. Numerous mechanisms have endeavored to address this challenge through means such as bridges (e.g., Wormhole, Allbridge), and interoperability standards (IBC). However, these initiatives still grapple with problems like centralization, diminished user experience, the necessity for protocols to conform to specific standards, and vulnerability to exploits. Achieving genuine interoperability remains elusive at present. This is precisely where ZetaChain steps in.

Left - Interoperability today. Right - Interoperability with ZetaChain. Source: ZetaChain

What is ZetaChain?

ZetaChain is a Proof-of-Stake blockchain built on Cosmos SDK and Tendermint PBFT (Practical Byzantine Fault Tolerance) consensus engine. As a result, ZetaChain enjoys fast block time and instant finality. Smart contracts on ZetaChain support arbitrary logic that executes conditionally on external chain events, and can directly update external chain states via its TSS (Threshold Signature Scheme) signed transactions. ZetaChain thereby enables omnichain dApps that interact with different blockchains natively and directly without wrapping or bridging any assets. Unlike Ethereum where a smart contract can be trusted to manage assets according to predetermined rules, except on ZetaChain, a smart contract can leverage and manage assets on any connected blockchain.

Do we need one more chain that promises interoperability?

If you've ever explored bridging or engaging in cross-chain transactions, you've probably encountered the challenge of true interoperability. Blockchains usually operate as closed systems, limiting transactions to the state of their respective blockchain. External information integration into the blockchain without a trusted third party, like an oracle, is not reliably achievable. For transactions that span multiple blockchains, reliance on a trusted intermediary, often a CEX (centralized exchange), is currently necessary. Consequently, there's a lack of a decentralized, permissionless, and public service enabling generic atomic transactions involving multiple blockchains. Even platforms like Cosmos, while enabling the creation of interoperable blockchains, require additional bridging mechanisms to connect with chains beyond the IBC ecosystem.

ZetaChain aims to solves this problem of partial interoperability.

Architecture of ZetaChain

In this section, we break down the different architectural elements of ZetaChain and its roles.

Validators : ZetaChain uses the Tendermint consensus engine, each validator node can vote on block proposals with voting power proportional to the staking coins (ZETA) bonded. We cover more about the ZETA coin below. Just like other chains, validators need to be online all the time, ready to participate in the constantly growing block production. In exchange for their service, validators will receive block rewards, and potentially other rewards such as gas fees or processing fees, proportional to their bonded staking coins. Contained within each validator is the ZetaCore and ZetaClient. ZetaCore is responsible for producing the blockchain and maintaining the replicated state machine. ZetaClient is responsible for observing events on external chains and signing outbound transactions. ZetaCore and ZetaClient are bundled together and run by node operators. Anyone can become a node operator to participate in validation provided that enough ZETA are staked. Chorus One is one of the node operators and you can stake your ZETA with us to ensure high rewards backed by robust security.

Observers: Observers are tasked with monitoring external chains for relevant transactions. This observer system is segmented into two key roles: sequencers and verifiers. The sequencer's responsibility is to identify relevant external transactions, events, and states, reporting them to the verifiers. The verifiers verify and vote on ZetaChain to reach consensus. The sequencer does not need to be trusted, but at least one honest sequencer is needed for liveness.

Signers: ZetaChain possesses a set of standard ECDSA/EdDSA keys that facilitate authenticated interactions with external chains. To prevent any single entity or a small fraction of nodes from having the ability to sign messages on behalf of ZetaChain on external chains, these keys are distributed across various signers to ensure that only a supermajority of them can sign on behalf of ZetaChain and it employs bonded stakes and a system of positive and negative incentives to ensure economic safety.

In practice, all above roles (except sequencer) are collocated in the same computer node, sharing software and credentials such as validator keys and bonded stakes and the associated rewards/slashing.

High level architecture of ZetaChain. Source: ZetaChain whitepaper

The ZETA token

ZETA token is a multi-chain utility token that play various roles like:

  • Securing the ZetaChain conensus via staking/delegation/slashing.
  • Gas asset used to pay gas fees on multiple chains
  • Represent value that can transfer from one blockchain to another

Total initial supply: 2,100,000,000 (two billion, one hundred million)

Inflation:  10% of the total supply (210m ZETA)  is allocated to the initial emissions pool on ZetaChain. This pool allows for block rewards targeted to sustain and secure the network over the first 4 years of network growth. After this pool is depleted, the protocol will introduce a planned 2.5% inflation through validator rewards, separate from the emission curve. More information here.

Summing up ZetaChain

As we’ve seen above, ZetaChain promotes true interoperability between different blockchains and has a unique mechanism to facilitate that. There’s no disagreement over the fact that we’ll have dozens of chains with their own use-cases and the current interoperability solutions do not provide a great user experience or efficient capital flow. We’re proud to be steadfast supporters of ZetaChain and the Cosmos ecosystem in general and look forward to the variety of applications that ZetaChain can enable. From multi-chain NFTs to omnichain DeFi, the possibilities are endless.

How to stake ZETA with Chorus One?

Ready to stake $ZETA? Simply reach out to us at staking@chorus.one, and we'll get you set up in no time!

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Opinion
Networks
Initiatives
How Soarchain unlocks dePIN's potential
A deep-dive on Soarchain, and how it unlocks the full potential of DePin technology
January 26, 2024
7 min read

In an era of rapid technological evolution, Soarchain emerges as a vanguard in the automotive industry, redefining the landscape of vehicle-based applications and services. By harnessing the power of blockchain and hardware, Soarchain simplifies the complexities of vehicular connectivity, offering a platform for applications ranging from real-time insurance adjustments to AI-driven diagnostics and safety enhancements. With its Layer-1 Decentralized Physical Infrastructure Network (DePIN) built on the Cosmos SDK, Soarchain is set to transform the mobility sector, offering a more inclusive, transparent, and scalable alternative to the proprietary networks dominating today's market.

In this article, we explore how Soarchain unlocks dePIN’s full potential.


Disclaimer: Buckle Up, But Don't Hit the Gas Just Yet!

Quick pit stop to share that we at Chorus One are on the journey with Soarchain as proud investors.

However, please note that our support and enthusiasm for this venture should not be interpreted as financial advice. While we're keen to explore the blockchain landscape with Soarchain, we advise you to make investment decisions based on your own research and judgment. Consider us as companions sharing insights, not as guides for your financial journey.

What is DePIN?

In a gist, DePIN refers to decentralized networks that employ the use of hardware to enhance data collection for specific use cases. For a wider view of the entire ecosystem, please refer to Mesari’s 2023 report.


DePIN & Existing limitations

Traditional Verification Methods and Conflicts of Interest:

  • Traditional methods often lead to conflicts of interest, inactive service providers, and susceptibility to fraudulent activities.

Unwanted Permission Layers and Security Vulnerabilities:

  • Many DePIN systems introduce permission layers or are susceptible to security vulnerabilities. Hardware verification methods, such as manufacturing-embedded key pairs or using secure elements like trusted execution environments, often lead to restricted network access and are prone to security vulnerabilities.

Scalability Constraints and Oracle Problem:

  • DePINs face challenges in verifying physical sensor data due to scalability constraints and the oracle problem (the difficulty of verifying real-world data in a decentralized context).

Specific Network Challenges:

  • Networks like IoTeX face scalability and privacy issues, Helium and MXC deal with centralized hardware dependence, and IOTA grapples with centralization due to its Coordinator.

Verification in DePIN Projects:

  • Current hardware-based approaches to verification, such as embedding key pairs or using trusted execution environments, have limitations like permissioning and vulnerability to hacks.

Incentive Challenges:

  • DePIN networks often suffer from incentive-related issues like self-dealing, lazy providers, and malicious providers.

Soarchain tackles these through decentralized sequencers, governance frameworks, and a layered approach to network architecture, enhancing scalability and privacy.

Soarchain’s Governance Framework

Soarchain introduces a robust architecture for onboarding new factory manufacturers and hardware providers in a secure and scalable manner.

The Hierarchical Certificate System
  • Master Certificate: The Soarchain Master Certificate sits at the apex of this structure, acting as the ultimate authority and trust anchor. It meticulously verifies and authorizes factory certificates, forming the backbone of the network’s security and trust.
  • Factory Certificates: These certificates, issued to hardware manufacturers, symbolize their commitment to quality and security. They play a crucial role in integrating new hardware providers into the Soarchain ecosystem, ensuring that each component adheres to the highest standards.
  • Device Certificates: At the grassroots level, device certificates verify the authenticity of individual hardware devices, safeguarding against tampering.

Manufacturers can generate a Certificate Signing Request (CSR) using the on-chain Root Certificate through governance proposals. Soarchain aims to incorporate tier-1 manufacturers. This specifically targets those incorporating secure elements in their Electronic Control Units (ECUs) or modules, a growing trend for enhanced security in automotive electronics. This integration will unlock new possibilities on Soarchain, like supply chain management, manufacturing process optimization, and trustless Over-the-Air updates for ECU firmware/software, a long standing costly challenge.

The system allows factories to submit governance proposals for inclusion, followed by proposals to issue a certain number of certificates. A key concern is that issuing non-time-bound or non-quantity-bound certificates grants manufacturers indefinite production rights. This could lead to a lack of accountability for their manufacturing processes and the products they produce. This innovative approach leverages Cosmos SDK and democratizes the onboarding of new manufacturers. It ensures that every level of the manufacturing and device integration process is secure, flexible, transparent and scalable.

Scaling with the Runner Network - The Celestia of DePIN

To address scalability, Soarchain implements a layer-2 solution with runner nodes that handle the bulk of data processing. This significantly reduces the load on the main blockchain and enhances the network's capacity to handle large data transactions. Runner nodes in Soarchain parallel the function of sequencers in the Celestia network. They manage data flow, gather public keys, create Merkle trees, and submit these summaries to the blockchain. From the Layer 1 perspective, the addition of thousands of vehicles and hundreds of thousands of new messages translates to only a moderate increase in network transactions.

Soarchain employs a Verifiable Random Function (VRF) within its core layer-1 virtual machine to dynamically select a consensus group from the pool of runners, preventing data validation centralization and potential collusion, operating like a decentralized sequencer. Runners in the consensus group are tasked with receiving, ordering, and verifying messages from vehicles, using these to create Merkle trees. They then generate and submit claims about these trees to validate their honesty and correctness. The system involves a distributed key generation process (Shamir Secret sharing algorithm) and threshold public key encryption to ensure that the content each runner submits is identical, maintaining the integrity of the verification process.

Users can operate a 'runner' via the Motus Connect and Drive mobile app. This setup allows users to earn extra network rewards. Runners are akin to Celestia's light clients but with an added responsibility: they sequence messages and verify their authenticity, ensuring the content is original, unaltered, and plausible. Similarly, more runners in Soarchain increase the number of supported vehicles, thereby expanding the network's message broadcasting capacity (as long as a certain percentage of full / validator nodes operate as runners).

Runners are also required to delegate a minimum amount of tokens to a validator. This serves two purposes:

  • It prevents unhealthy competition between runners and validators. As the number of runners grows, more tokens are delegated to validators, enhancing network security.
  • It ensures runners have a stake in the network, aligning their interests with its overall health and security.

Just like that, Soarchain presents the first ever mobile / app based shared sequencer to operate light clients.

Solving Privacy: The Role of zk-SNARKs

Soarchain has integrated zk-SNARKs, particularly through the Groth16 scheme, to ensure robust data verification while maintaining confidentiality. This technology allows vehicles to generate cryptographic proofs of data authenticity and integrity without revealing the underlying data, thereby preserving privacy.


Uses of zk-SNARKs
  • At the core of Soarchain's privacy solution are Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge (zk-SNARKs).
  • This cryptographic method allows vehicles within the Soarchain network to prove the authenticity and integrity of their data without revealing the actual content.
  • The integration of zk-SNARKs maintains data confidentiality, ensuring sensitive vehicular information remains private.

Data Verification and Privacy
  • Vehicles transmit Parameter IDs (PIDs) to the blockchain, which are standardized diagnostic codes containing vital vehicle information.
  • This data is securely signed with the vehicle's certificate (containing public keys) derived from device certificates, validating the data's origin and ensuring integrity.

The use of zk-SNARKs, particularly through the Groth16 scheme, allows for efficient management of multiple proofs for similar types of PID data, crucial in Soarchain's network. Soarchain employs a unique method to verify the plausibility of PIDs (Parameter IDs) through two approaches: individual analysis of each PID and joint analysis of PIDs with known high correlations.  Each Performance Indicator Data (PID), like fuel pressure or engine temperature, is validated meticulously, ensuring the accuracy and reliability of data transmitted via distributed MQTT brokers. This process ensures user privacy, as it doesn't require decrypting plaintext data on the public blockchain. Instead, plausibility checks are conducted while preserving privacy. This is made possible through specially designed arithmetic circuits, verified using zero-knowledge methods, ensuring that no sensitive data is exposed during the verification process.

A physical decentralized oracle

The oracle problem, particularly in the context of Soarchain, refers to the challenge blockchains face in accurately interacting with external, real-world data. For Soarchain, this data is physical, real-time mobility information generated by sensors, cameras, and actuators on vehicles and road users. The key issue is ensuring the data's authenticity and that the data sources are honest. To address this, Soarchain uses hardware equipped with a secure element, ensuring that a) the hardware runs the intended firmware, preserving the operational integrity, and b) private keys corresponding to public keys and certificates are securely stored, safeguarding the security, integrity, and authenticity of the data.

Once these pre-verification checks are completed, the data is transformed into "messages" akin to transactions and sent to Soarchain's verification layer. This layer constructs Merkle trees using these messages and generates a proof once a certain number of messages are aggregated. The proof is then submitted to the chain, and the metadata of the data is immutably recorded on the blockchain. This process enables any entity on the chain to interact with a reference to the proven and verified data originating from real-life sources.

To overcome the oracle problem's scalability constraints and complexities, Soarchain combines decentralized oracle systems with hardware-accelerated and proof-based mechanisms. While centralized oracle solutions pose a risk of single-point failure and require significant trust, decentralized oracles, though more secure, often lack a hardware-accelerated, proof-based system. Soarchain's runner architecture not only serves as an incentivized, trust-minimized oracle network, but it also acts as a scaling layer. This allows for the aggregation and proof of pre-verified data messages without needing to submit each message in full to the blockchain. This method significantly reduces the burden on the blockchain while maintaining the integrity and trustworthiness of the data being processed.

Conclusion

In conclusion, Soarchain stands at the forefront of revolutionizing decentralized mobility and related applications. Its robust Layer 1 blockchain technology enables a myriad of real-world applications, from decentralized ride-sharing platforms, offering a more equitable and transparent system, to smart parking solutions that ensure secure, fraud-resistant transactions. Additionally, Soarchain plays a pivotal role in the coordination of autonomous vehicles, promoting safety and efficiency through real-time communication and decentralized consensus.

Soarchain represents a significant leap forward in the world of decentralized networks. Its innovative governance framework, the integration of zk-SNARKs for data verification, and the unique approach of using runner nodes and a decentralized sequencer collectively forge a path towards a more secure, scalable, and trustable digital future. With these technologies, Soarchain is not just solving the present challenges of dePINs but also paving the way for the untapped potential of hardware based decentralized networks.

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Networks
Others
Ecosystem Review - Injective
As part of the first edition of our ecosystem review series, published originally in our Q3 Quarterly insights, we take a closer look at Injective and provide a comprehensive overview of the current state of the ecosystem.
January 9, 2024
7 min read
  • This is an excerpt from the Quarterly Insights Q2 2023 report. Find the full report, here.

The Cosmos ecosystem is one of the most diverse in crypto as it allows for experimentation and simple bootstrapping of new ideas, due to the accessibility of the Cosmos SDK stack. The result is the launch of multiple chains on a monthly basis, each one targeting specific issues or innovative solutions. As a recent highlight, the Cosmos Hub is on the forefront, with the implementation of ICS v1 (“replicated security”), becoming the first shared security solution in production.

The previous edition of our Quarterly Insights report covered the basic concepts and related projects pushing the boundaries for innovative solutions in staking. You can download it here.

This article starts a series of reviews of well known projects, aiming to uncover the present state of these “long lived” protocols. This edition focuses on Injective, a fast and cheap blockchain built for finance, featuring 0.9s block times and less than $0.01 fee per transaction. Injective provides infrastructure that is optimized for enterprises to build a diverse array of institutional grade financialapplications. An example of a high level contribution is the module that allows the implementation of an on-chain order book. The OpenDeFi Foundation is the non-profit organization behind the Injective protocol. Backers include high profile names, such as Binance, Jump, Pantera and Mark Cuban.

Technical architecture

Injective is a Layer 1 (L1) blockchain built on top of the Cosmos SDKand the CometBFT Consensus protocol. The network is operated by60 validators at the time of writing. The number of validators may seem low when compared to other delegated PoS blockchains (e.g.Solana: 1900 validators), but it can still be considered similar to otherCometBFT based chains. The protocol is proof-of-stake based and has a limited validator set to optimize for throughput. The expected tendency is for the network to be secured also by social consensus,with delegators working on identifying more reliable and trustedvalidators to delegate to.

In the Injective case, the super-majority is formed by 4 validators that hold more than 33% of voting power at the time of writing.Aware of the risks imposed by centralization, and to incentivize contributions from other node operators to the development of the ecosystem, the Open DeFi Foundation recently announced theFoundation Delegation Program to increase the voting power controlled by relatively smaller validators.

From a validator's perspective, Injective can be a demanding network to run due to its short block times and, consequently, higher chance of failing to sign blocks. This characteristic is reflected in the validator “uptime”, which varies from 80% to 99% on Injective amongst all validators, while for other networks the uptime is on average closer to 100%. The update process has consistently been well-managed and smooth. Overall, we have a positive impression of the network's technical architecture.

Staking distribution at the time of writing. Source: https://www.mintscan.io/injective/validators
Activity

The most popular dApp on Injective is Helix, a decentralized exchange that allows for spot and derivatives trading of cross chain assets. More than $10B have been traded since the launch in November 2021, with derivatives being responsible for $9.3B. The total value locked in pools (TVL) is $11.5M and the most active perpetual markets are BTC/USDT and ETH/USDT. INJ/USDT is the most liquid spot market.

Helix creates a seamless trading experience, with a  user interface comparable to a centralized exchange, low costs and advanced features, such as order types, graphical indicators and liquidity analysis. To start using Helix, users can connect from a Metamask, Keplr, Ledger, Cosmostation, Leap, or Trezor wallet.

Injective trading interface. Source: https://helixapp.com/futures/btc-usdt-perp

The Open Liquidity Program (“OLP”) is an initiative recently announced to foment on-chain liquidity: beginning June 13, 2023,60,000 INJ can be earned during each epoch by those executing trades through the API or on decentralized exchanges built onInjective. The program prioritizes deep, long lasting liquidity, by using the following metrics to measure the quality of the activity: dual sidemarket making, uptime, volume and spread. All information on the reward calculations and API can be found in the OLP docs here.

Additionally, the first Injective Hackathon recently concluded, with the submission of 300 projects, and 357 builders, attracting developers, entrepreneurs, and blockchain enthusiasts, the four week online event fostered new innovations across Web3. Highlights from submissions involve options trading, asset management tools, money marketing platforms and NFT marketplaces. Additionally, the Injective Ecosystem Venture Group is a group of prominent institutions and venture funds that have come together to back the future of the protocol with a $150 million initiative. The focus is to support promising projects building within a diverse array of sectors including interoperability, DeFi, trading, PoS infrastructure, rollups and scalability solutions. Visit the official page to be informed on criteria and the process to apply.

Cross-chain Composability

Given Wormhole integration and IBC compatibility, from the userperspective, it is fairly easy and cheap to interact with multiple blockchains from- and to- Injective. According to the Map of Zones, Injective communicates with 19 different Cosmos chains. The biggest flow of assets happens between Injective and the CosmosHub.

In May 2022, the protocol started working with the Wormhole bridge, making it easier for users and developers to interact with other blockchains. The most common asset bridged to Injective isUSDT, with more than 11 million of USDT at the time of writing. Other bridged assets include wETH, USDC, SOL, wMATIC and LINK.

Also, in March 2023, Cascade was launched - a layer-2 testnet that utilizes the Solana’s Sea Level Virtual Machine (SVM) provided byEclipse. This means that Solana developers can test their apps for use in the Cosmos without needing to change the programming language or tooling used. More information can be found here. April 2023 was the time for Injective to start communicating with Polkadot. The integration happens through the Celer Bridge, and allows users to transfer INJ, ATOM, ASTR and DOT between the Injective blockchain and the Astar parachain. More information can be found here.

Injective Peers according to Map of Zones.

Economics

Injective mainnet is live since November 2021. INJ, its native token,has multiple purposes in the ecosystem, as it is used:

I. to secure the PoS chain;  

II. to participate in the on-chain governance;  

III. to pay for exchange fees, and in the buy back and burn model;

IV. as margin and collateral backing derivatives positions. The current supply of INJ is 600m tokens and it increases over time through block rewards - incentives to token holders when locking INJ to help secure the Proof of Stake (“PoS”) network (“staking rewards”).

The emission rate (“inflation”) at the time of writing is 10% per year, and 62.5% of INJ total supply is currently locked in staking, resulting in 15% yearly yield. INJ is being traded at $7.94 and the fully diluted market cap is $794million. INJ price has been showing resilience throughout this bearmarket, as it was able to recover a good part of its value, despitemost of the market still struggling with low prices in the same period.

According to IntoTheBlock, Injective has a 94% concentration bylarge holders, i.e. whales - addresses with more than 1%; and investors - addresses with more than 0.1% of circulating supply.

The protocol suggests a global minimum fee structure, meant tofavor those adding liquidity to markets, also known as “marketmakers''. Maker fee is 0.01% of the total amount of the order, whilemarket taker orders - those trading against the orderbook, pay0.02% of the trading amount. Although the maker/taker model iscommon on centralized exchanges, Injective fees are half of what auser would pay when trading on Binance, for example. For a more indepth analysis of fee models in different exchanges, we recommend this article by Deribit.

Additionally, as a way to support the applications, the protocol transfers 40% of trading fees back to the dApp. This value can be used to source the trading activity on the exchange, offering fee rebates and other incentives to increase financial yield to users. The other 60% are kept by the protocol and periodically auctioned in exchange for INJ. The INJ proceeds of this auction are then burned, thus creating a potential deflating mechanism in the total INJ supply.  Each application built on top of Injective may implement fees and incentives in a slightly different way. For example, Helix adds discounts to the taker fees, depending on the amount of INJ staked by the user and the amount traded in the last 28 days. Discounts start at 7.5%, when staking 25 INJ and trading volume $100,000. It can get to 80% for users staking at least 75,000 INJ and $100m trading volume.

$INJ price chart - log scale. Source: https://coinmarketcap.com/currencies/injective/

Wrapping Up

Injective has been actively working on growing its ecosystem, tackling the different aspects to promote the activity and adoption of the network. On the TVL level, Injective is the 52nd chain on the DeFiLlama ranking. There are relatively few spot and derivative markets with significant liquidity levels - greater than $10,000 on the top of the book, and trading volumes are still low compared to otherdecentralized exchanges. On the other hand, Injective provides a fully on-chain experience, in contrast with most decentralized exchanges, through its order book and seamless trading experience, including advanced order types and technical analysis tools, that are partially unique in the crypto space, and we consider to be good differentials for the protocol.

Centralization of stake in a small number of validators is another concern for this network. Both points are subjects of the initiatives created by the Foundation and presented in detail in the previous sections.

When looking at tokenomics, the INJ token is one of the most valuable assets in the Cosmos, second only to the $ATOM token according to Mintscan. It also has multiple use cases, from staking to buy back and burn auction, which tend to power the demand and keep its value in the future. In terms of price, it has shown resilience compared to most assets in the Cosmos ecosystem during the recent tumultuous times crypto and global markets went through. The staking yield of around 15% annually is also aligned with other high value Cosmos chains.

As our final impressions, Injective seems to be taking the right steps to address its short comings while pushing ahead with its coremission. Chorus One is an Injective validator. You can find more information on how to stake INJ tokens on https://chorus.one/crypto-stakingnetworks/injective or reach out to us: staking@chorus.one.

To stay up to date with Injective

Blog: https://blog.injective.com/

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 50+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Others
Networks
Reflections #3: Networks added in 2023
A recap of all the new networks added in 2023
December 19, 2023
5 min read

In 2023, we're proud to have added staking support for nearly 20 new networks. This edition of Reflections recaps all the networks we have added support for this year and how you can start staking with Chorus One. Dive in!

January
  • MARS

Mars is a multichain credit protocol enabling borrowing and lending primitives in the Cosmos. With Mars v2, the protocol introduced "Rover credit accounts" to Osmosis. Much like Binance subaccounts, credit accounts act as transferrable NFT containers where users can deposit assets, and use them as collateral for borrowing, spot or margin trading, leveraged yield farming, and hedging — all with a single liquidation point.

Learn more: https://chorus.one/articles/chorus-one-announces-staking-support-for-mars

Stake MARS: https://chorus.one/crypto-staking-networks/mars

February
  • Gnosis

Gnosis Chain is EVM-based and secured by over 100k validators around the world. It hosts a very diverse validator set and it is propped up by the community governance of GnosisDAO to ensure it remains credibly neutral at a much lower price point than Ethereum mainnet. It powers an ecosystem of DApps including POAP (Proof of Attendance Protocol, the original NFT protocol), Dark Forest (a fully decentralized strategy game, built with zkSNARK technology), Giveth (public goods, peer-to-peer direct funding platform), and much more.

Learn more: https://chorus.one/articles/chorus-one-announces-staking-for-gnosis-chain

Stake GNO: https://chorus.one/crypto-staking-networks/gnosis

  • Quicksilver

Quicksilver is a permissionless and sovereign Cosmos liquid staking protocol that provides liquid staking to all networks in the Cosmos Ecosystem. The Quicksilver protocol is one of the first blockchains to participate in Interchain Security, and will become a Consumer Chain of the Cosmos Hub. By staking your tokens with Quicksilver, you receive a representative token (qTOKEN) that can be used later on in DeFi.

Learn more: https://quicksilver.zone

Stake QCK: https://chorus.one/crypto-staking-networks/quicksilver

  • KYVE

Kyve is a PoS blockchain built with the Cosmos SDK. It has two layers: the Chain Layer and the Protocol Layer, each with its own node infrastructure.

Kyve aims to revolutionize customized access to on- and off-chain data by providing fast and easy tooling for decentralized data validation, immutability, and retrieval. With these tools, developers, data engineers, and others can easily and reliably access the trustless data they need in order to continue building the future of Web3.

Learn more: https://chorus.one/articles/chorus-one-announces-staking-support-for-kyve

Stake KYVE: https://chorus.one/crypto-staking-networks/kyve

March
  • Noble

Noble is a Cosmos application-specific blockchain purpose-built for native asset issuance. Noble brings the efficiency and interoperability of native assets to the wider Cosmos ecosystem, starting with USDC. Noble’s vision is to be the world’s premier issuance hub for digital assets that connect to other blockchains seamlessly. Noble leverages the Cosmos-SDK – a flexible toolkit that allows developers to leverage existing modules, and to seamlessly integrate custom modules that add virtually unlimited functionality for asset issuers onthe Noble blockchain.

Learn more: https://nobleassets.xyz

April
  • Onomy

The Onomy Network is a Proof-of-Stake blockchain constructed using the Cosmos SDK framework, which enables it to achieve scalability by leveraging the infrastructure supported by a network of institutional validators, like Chorus One.

With a block time of just five seconds, and its high throughput, low latency, and low fees features, the Onomy network is made to be ideal for financial transactions.

Learn more: https://chorus.one/articles/chorus-one-announces-staking-support-for-onomy

Stake NOM: https://chorus.one/crypto-staking-networks/onomy

  • Aptos

Aptos is a high-performance layer 1 proof-of-stake protocol that aims to be one of the safest and most scalable protocols, with a core focus on user experience. It was initiated by Aptos Labs, a venture founded by former engineers and scientists from Diem (formerly Facebook), with a vision to build their own, permissionless blockchain. Aptos is built using the Move programming language along with the Move Virtual Machine for dApp development. The team behind Aptos was actively involved in the development of Move, with a focus on flexibility, customizable transaction logic, and provability to enhance the safety of writing smart contracts.

Learn more: https://chorus.one/articles/chorus-one-announces-staking-support-for-aptos-network

Stake APT: https://chorus.one/crypto-staking-networks/aptos-2

May
  • Sui

Sui Network is a permissionless Layer-1 blockchain and smart contract designed from the ground up to make digital assets ownership fast, secure, and accessible to the next generation of Web3 users. Its pioneering architecture is implemented to create a world-class developer experience, in addition to vastly improving performance and user experience of L1 blockchains.

Learn more: https://chorus.one/articles/chorus-one-announces-staking-support-for-sui-network

Stake SUI: https://chorus.one/crypto-staking-networks/sui-2

  • Neutron

Neutron is a blockchain network that brings Smart Contracts into the Cosmos-family blockchains using CosmWasm. Neutron works with networks using the IBC protocol. Neutron security (block validation) is provided by the Cosmos Hub network using Interchain Security.

Learn more: https://www.neutron.org

July
  • Archway

Archway Network is a testament to visionary architecture. By leveraging the Cosmos SDK, Tendermint, and CosmWasm, the Archway team have built an infrastructure that excels in speed, scalability, and security. What truly sets Archway apart is its seamless interoperability through the Inter-Blockchain Communication (IBC) protocol, which fosters a cohesive ecosystem where data and value can flow freely between different blockchains.

Unlike L1 blockchains that primarily focus on token distribution to early participants, Archway takes a different approach. It recognizes the value and impact of developers and builders by incentivizing them based on their contributions to the network. This unique model aims to level the playing field among developers, providing equal access to capital and support, regardless of their connections or associations.

Learn more: https://chorus.one/articles/network-101-archway-the-blockchain-built-for-developers

Stake ARCH: https://chorus.one/crypto-staking-networks/archway

  • GoGoPool

GoGoPool is the first permissionless staking protocol built for Avalanche Subnets, allowing node operators to launch validators cheaper and faster using the GGP token. Currently, we cater to node operators and liquid stakers.

Learn more: https://www.gogopool.com

Stake GGP: https://chorus.one/crypto-staking-networks/avalanche  

  • Play3ull

PLAYA3ULL is a Gaming Publisher that merges PC-based games with crypto. The project uses the 3ULL token in the games and produce that token from Nodes.

Learn more: https://playa3ull.games

  • Stride

Stride is a multichain liquid staking zone (appchain) on the Cosmos Blockchain. Stride allows users to stake any IBC-compatible tokens, and receive stTokens in return, which are redeemable for the original token at a 1:1 ratio. By staking their tokens using Stride, users will be able to earn staking rewards, while also retaining liquidity in the form of stTokens, which will allow them to take advantage of Cosmos DeFi and pursue more yields there.

Learn more:  https://www.stride.zone

August

Sei has positioned itself as the fastest Layer 1 blockchain with a lower bound of 300ms and an upper bound of 20,000 OPS for processing. Designed specifically for trading, Sei has meticulously optimized every layer of its infrastructure to provide unmatched speed and efficiency, targeting exchanges and various trading applications. One standout feature is its native order-matching engine within Layer 1, enabling exchange apps to scale more effectively than on other Layer 1 blockchains.

Learn more: https://chorus.one/articles/network-101-sei-network

Stake SEI: https://chorus.one/crypto-staking-networks/sei

October
  • dYdX v4

dYdX v4 is the latest iteration of dYdX, one of the most prominent decentralized exchanges and premier trading platform for cryptocurrency.  The DEX initially launched as an Ethereum-based Layer 2 solution and has now made a significant move by transitioning to its dedicated blockchain, known as the dYdX Chain (or dYdX v4), built using the Cosmos SDK. We've compiled all the essential information about the chain, complete with an in-depth exploration of their move to Cosmos and Chorus One's ongoing involvement with dYdX since the very outset in a comprehensive guide. Check it out here.

Learn more: https://chorus.one/articles/network-101-a-comprehensive-guide-to-dydx-v4

Bridge and Stake DYDX: https://chorus.one/articles/how-to-bridge-your-dydx-tokens-from-ethereum-to-cosmos

Stake DYDX via Keplr: https://chorus.one/articles/how-to-stake-dydx-with-chorus-one-using-the-keplr-wallet

  • Celestia

Celestia is a modular network that makes it easy for builders to launch their own blockchain by focusing solely on data availability. It allows developers to easily deploy blockchains on top of Celestia, much like deploying smart contracts. This accessibility empowers individuals to create their own unique rollups and blockchains, serving a multitude of purposes and ensuring scalability for a broader audience.

Learn more: https://chorus.one/articles/why-is-data-availability-important-and-how-is-celestia-addressing-this

Stake TIA: https://chorus.one/crypto-staking-networks/celestia

November
  • Chainflip

Chainflip is a cross-chain decentralized exchange based on a proof-of-stake validator network that offers users the simplest way to swap assets across different chains. Fully permissionless, it simplifies trading for users who can select the coins they want to trade and submit the transaction. No wrapped tokens, synthetic assets, KYC, P2P counterparties, or any other time-consuming complexities are requisite. Chainflip is designed to minimize slippage and offer great pricing for high-liquidity trading pairs.

Learn more: https://chorus.one/articles/network-101-a-concise-guide-to-chainflip-and-how-it-simplifies-cross-chain-swaps

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 45+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

News
Networks
Network 101: A concise guide to Chainflip, and how it simplifies cross-chain swaps
Your guide to Chainflip, the decentralized exchange built to simplify cross-chain swaps
November 23, 2023
3 min read
  • Chainflip is a cross-chain decentralized exchange that leverages Just-In-Time (JIT) liquidity to provide better capital efficiency for LPs and less slippage for traders.
  • Contrary to traditional AMMs like Uniswap, where liquidity is maintained through smart contract-stored pools, Chainflip operates with up to 150 validators constructing multisig 'vaults' on all supported blockchains simultaneously which are secured using Chainflip’s native token, FLIP.
  • The user simply needs to select the coins they want to buy/sell and submit the transaction. No wrapped tokens, synthetic assets, KYC, or any complex set up is needed.
  • Although users can't delegate FLIP to public nodes, our institutional customers can engage through Chorus One's whitelabel solution for Chainflip.

In March 2020, Vitalik Buterin expressed frustration over the lack of a trustless solution for swapping between BTC and ETH. Fast forward to November 2023, and Chainflip has finally arrived, transforming swaps with a straightforward and seamless process for exchanging digital assets. Chorus One is proud to support the network as one of the genesis validators!

What is Chainflip?

Chainflip is a cross-chain decentralized exchange based on a proof-of-stake validator network that offers users the simplest way to swap assets across different chains. Fully permissionless, it simplifies trading for users who can select the coins they want to trade and submit the transaction. No wrapped tokens, synthetic assets, KYC, P2P counterparties, or any other time-consuming complexities are requisite. Chainflip is designed to minimize slippage and offer great pricing for high-liquidity trading pairs.

How does Chainflip work?

Contrary to traditional AMMs like Uniswap, where liquidity is maintained through smart contract-stored pools, Chainflip operates with up to 150 validators constructing multisig 'vaults' on all supported blockchains simultaneously, collateralised by Chainflip's token, FLIP. The assets used for trading are held in these Vaults on chains such as Ethereum, Bitcoin, and so on, creating a decentralized ‘settlement layer’. This is paired with the ‘accounting layer’, the Chainflip State Chain, which is a substrate-based application specific Blockchain. Instead of traditional on-chain pools, Chainflip virtually trades assets on the ‘State Chain’, balancing accounts and settling with the real assets stored securely in Vaults. The State Chain oversees all activities in the Chainflip protocol, including but not limited to recording, executing, or triggering protocol events. Think of it like a unified wallet system in centralized exchanges, simplifying the tracking of user balances.

Trading and tracking assets virtually on the State Chain simplifies the work needed to support individual chains, as rather than needing to write swapping logic in a range of smart contract and scripting languages on external blockchains, it is entirely contained within the Chainflip State Chain environment.

Validators achieve consensus on every transaction within the Chainflip State Chain. FLIP is automatically purchased and burned with each swap, funding emissions for validators and offering liquidity incentives.

Additionally, all of the swapping and trading logic happens on the State Chain, meaning it’s fast, cheap, and dedicated for this purpose. The user experience is incredibly simple, requiring only a destination address for a swap, without any setup: The user selects the coins they want to buy/sell and submit the transaction. No wrapped tokens, synthetic assets, KYC, P2P counterparties, or anything else complex and time consuming is needed.

The above animation by Chainflip demonstrates the path of a typical swap, where a hypothetical user swaps USDC (ERC20) for BTC (native), and Market Makers A & B compete to win the liquidity fee from the trade. Source: https://docs.chainflip.io

  1. User deposits 10,000 USDC on Ethereum.
  2. Market Makers notice this and prepare for the trade, adjusting their prices.
  3. The swap happens on Chainflip after some Ethereum blocks, around 90 seconds.
  4. Using strategies like risk model calculations to determine their best possible price for the trade, Market Makers aim to profit by selling and rebuying BTC during the process.
  5. The Chainflip network sends the swapped BTC to the user’s BTC wallet.
  6. Market Makers adjust their portfolios for future opportunities.

For a more detailed explanation of each step, visit https://docs.chainflip.io/concepts/swaps-amm/just-in-time-amm-protocol

Staking Mechanisms

Chainflip, a Proof of Stake network without support for native delegation, allows up to 150 validators in the protocol's authority set. Validators secure the network using collateralized FLIP as part of the active set. All Validators with sufficient $FLIP to outbid others in Auctions become part of the active set and similar to Ethereum, each authority member earns equal rewards per epoch. A fixed reward (much less than the Authority Set reward) is split between Backup Validators each Epoch. To be a Backup Validator, Validators must be Qualified and have one of the top 50 bids of non-Authorities.

Chorus One’s Contributions to Chainflip

We've collaborated closely with Chainflip since its inception, actively participating in the testnet.

How Can Institutions and Investors Get Involved?

While users can't delegate FLIP to public nodes, our institutional customers can get involved through Chorus One's whitelabel solution for Chainflip. We set up and maintain validator nodes on your behalf, allowing you to brand the node while we handle all the technicalities. To learn more about our whitelabel solution for FLIP, please reach out to us at staking@chorus.one.

Resources

An introduction to Chainflip

Conversation with Simon Harman, founder of Chainflip on Epicenter Podcast -

Chainflip Docs

Website

Twitter

About Chorus One

Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 45+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

Networks
Opinion
Network 101: A comprehensive guide to dYdX v4
dYdX v4 has arrived - Here's Your Complete Guide to the Chain
October 25, 2023
7 min read

After rigorous testing and numerous iterations, dYdX is soon making its transformational shift to the Cosmos ecosystem, unveiling its fourth and latest version as a standalone blockchain known as dYdX Chain, built using the Cosmos SDK. We’re proud to be joining the network as a genesis validator, enabling staking for dYdX's token, DYDX.

Since its inception, dYdX has been instrumental in facilitating over $1 billion in daily trading volume, achieving a remarkable milestone by surpassing $1 trillion in total trading volume through smart contracts on the Ethereum blockchain. Looking ahead, the exchange will implement a unique off-chain, in-memory order book trading system that will be overseen by a network of validators.

This article delves deeper into what this entails for stakers and offers insights into the workings of dYdX v4.

Part 1: The dYdX Chain
The evolution of dYdX

dYdX stands out as the leading decentralized exchange (DEX), specializing in the trading of derivative products known as "perpetuals." Perpetuals allow users to take leveraged long or short positions on crypto assets. In contrast to Uniswap and other DEXs, dYdX distinguishes itself by not relying on an automated market maker (AMM) to facilitate trading. Instead, it employs a traditional orderbook and matching model to cater to the needs and expectations of sophisticated traders and institutions. We've explored the key distinctions between AMMs and order book trading here.

In its initial launch in 2017, dYdX was introduced as an Ethereum Layer 1 application. However, the chain's limited scalability became evident, with users facing exorbitant gas fees for even simple trades.

To enhance scalability, dYdX transitioned to an Ethereum-based Layer 2 solution employing StarkX/StarkNet technology. This shift significantly reduced gas fees, vastly improving the user experience. Yet, it led to a higher degree of centralization within dYdX.

To address this centralization concern and advance decentralization, dYdX made the strategic choice to transition to its blockchain, built using the Cosmos SDK. This imminent transition, on the verge of completion and soon to go live, represents the DEX’s fourth and latest version, known as the dYdX Chain and will feature a decentralized, off-chain order book capable of seamlessly scaling with the platform’s growth.

As part of the Cosmos ecosystem, dYdX stands to gain the full advantage of decentralization, along with an array of unique features such as extensive customizability and scalability. We’ve delved into the specific reasons behind dYdX’s choice of Cosmos in the following section.

Why did dYdX choose Cosmos?

dYdX's decision to migrate from Ethereum to Cosmos stems from a strategic choice to utilize the unique capabilities of Cosmos technology, which offers a distinct advantage in building new layer-1 blockchains. Cosmos' Tendermint proof-of-stake consensus engine provides the foundation to develop a standalone, application specific blockchain with cross-chain capabilities, and makes it possible to fully customize how the chain functions.

Unlike Ethereum, where network congestion can be a concern, Cosmos’ app-specific chains function independently, and each Cosmos chain operates with its network of validators and token. This move permits blockchains to have faster transaction processing while maintaining decentralization, thus positioning Cosmos as the ideal choice for dYdX’s requirements, which demand high throughput - roughly, 10 operations per second and 1,000 orders/cancellations per second. Currently, Cosmos can process up to 10,000 transactions per second, or TPS, compared to Ethereum's 15-25 TPS.

A recent twitter thread by dYdX succinctly described the key separators between Layer 2s/Roll ups and standalone app-chains, and reiterated their decision to choose the latter. Read it here.

How will dYdX work on Cosmos?

While on-chain orderbook DEXs offers a high level of transparency and decentralization, it comes at the cost of potentially higher transaction fees and slower transaction speeds. With each transaction requiring on-chain validation, the underlying network’s throughput can become a bottleneck, thus affecting the overall network efficiency.

In contrast, on dYdX v4, each validator will maintain an off-chain in-memory order book. When a new order is placed, it is initially routed to a validator that is randomly chosen. Subsequently, this validator disseminates the transaction to other validators to ensure the order book remains up to date. This alleviates the pressure on the network, allowing the chain to achieve significantly higher throughput for the order book while retaining decentralization.

The transaction flow roughly looks this -

Source: dYdX
Key Features of dYdX v4:
  1. Off-Chain, Decentralized Order Book Trading: As mentioned previously, dYdX v4 introduces an off-chain in-memory order book, mitigating potential throughput bottlenecks common in on-chain order book DEXs. This design significantly enhances order book throughput while preserving decentralization.
  2. Unparalleled Transaction Speed: dYdX v4 leverages Cosmos’ 10,000 TPS capacity to process a significantly larger volume of transactions.
  3. No Gas Fees: The chain's customizability means traders will no longer incur gas fees for trading; instead, they will pay fees based on executed trades, similar to dYdX v3 or other centralized exchanges. These fees are accrued to validators and their stakers.
  4. The Token DYDX: dYdX v4 will be powered by its token, DYDX. This token serves multiple purposes, including staking and governance of the chain.
  5. Open-Source: All dYdX v4 code is open source, running on permissionless networks, and no services will be operated by dYdX Trading Inc., which empowers the dYdX community to maintain a vertically integrated approach, with protocol token holders exercising full control over the system.
  6. Highly Secure: In order to ensure the highest level of security for the dYdX Chain, it has undergone extensive testing and code auditing by Informal Systems to guarantee that user funds always remain safe.

dYdX Tokenomics
Source: dYdX

Total supply: 1,000,000,000 DYDX tokens

50% of tokens go to the dYdX community which will comprise liquidity providers, traders, stakeholders, and users who complete trading milestones. A portion of this share goes to the community treasury.

27.73% of the tokens go to investors.

15.27% of tokens are allocated to the official team members of dYdX including founders, advisors, employees, and others.

7% of the tokens are reserved for consultants and employees who will join the platform in the future.

Chorus One’s extensive involvement with dYdX

We’ve had extensive involvement with dydX v4 since inception as well as the Cosmos ecosystem in general. We received a grant from dYdX to write an in-depth research report (available here) that examines the implications of Maximum Extractable Value (MEV) within the context of dYdX v4 from a validator's perspective. Additionally, we were on all three testnets and actively contributed through debugging and sharing validator best practices.

dYdX occupies a unique position as a decentralized solution that directly competes with centralized exchanges in terms of its order book model, trading volume, and user experience aligns with our vision for the future of decentralized finance. Furthermore, we share dYdX's philosophy of prioritizing the creation of the best possible product, making our support for their forward-looking vision a natural choice.

Part 2: Why should you stake DYDX with Chorus One

  1. No one understands the Cosmos ecosystem like we do

Chorus One has been more than just a player in the Cosmos space. With our $30M venture arm, Chorus Ventures, we have actively invested in promising projects such as Celestia, Osmosis, Agoric and more, which keeps us well-connected to the ecosystem. We're also deeply engaged with the community, publish research reports, and extensively cover Cosmos in our blog.

  1. No one understands MEV like we do

Chorus One is the only node operator with a dedicated in-house quant team focussing on MEV. MEV refers to the maximum value that can be extracted from block production in excess of the standard block reward and gas fees by including, excluding, and changing the order of transactions in a block.

Because of our MEV expertise, we were provided a grant by dYdX to work on a research paper that goes into the territories of cross-chain arbitrage and also explores the subject of negating MEV externalities in a fully decentralized, validator-driven order book.

The report entails comprehensive insights on MEV’s impact on the new chain and trading, cross-chain MEV opportunities, user welfare, and centralization risks, ultimately providing practical solutions for mitigating validator-driven MEV risks. Read the report here.

  1. The most active Node Operator when it comes to Governance

Chorus One is the most active node operator on Cosmos where on-chain governance is enabled.

We have published a detailed research report last year on Cosmos’ governance, which elaborates on Cosmos’ validator participation, voting trends, controversial proposals, and why Chorus One is one of the most active node operators in the Cosmos ecosystem.

In the report, we conducted a governance performance comparison against the top 5 validators by stake on 13 chains from April 2022 to November 2022, which includes Akash, Axelar, Cosmos Hub, Evmos, injective, Juno, Kava, Osmosis, Persistence, Regen, Secret, Sommelier, Stargaze.

As illustrated in the chart below, our voting activity exceeded that of the average top 5 validators by 30%. However, it's crucial to note that the top 5 validators can vary significantly on each chain.

Out of the 13 networks studied, we achieved a 100% voting record in two networks, and in one network, Kava, we surpassed the average by approximately 90%, as demonstrated in the graph below.  We consistently exceeded the average participation rates of the Top 5 validators on 11 out of 13 networks

Staking DYDX with Chorus One: Key Information

*Since DYDX inflation goes to traders, dYdX stakers, in contrast, will receive 100% of the trading fees that are paid out in USDC.

To learn more about staking DYDX with Chorus One, don’t hesitate to reach out to us at staking@chorus.one. For any support queries, visit here.


About Chorus One
Chorus One is one of the biggest institutional staking providers globally operating infrastructure for 45+ Proof-of-Stake networks including Ethereum, Cosmos, Solana, Avalanche, and Near amongst others. Since 2018, we have been at the forefront of the PoS industry and now offer easy enterprise-grade staking solutions, industry-leading research, and also invest in some of the most cutting-edge protocols through Chorus Ventures.

 Join our mailing list to receive our latest updates, research reports, and industry news.

Want to be a guest?
Drop us a line!

Submit
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.